mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-06-07 21:17:07 +09:00

This commit adds support in AK/Random for a high quality RNG on windows. This requires moving the code into a cpp file not to spread windows headers around.
100 lines
3.7 KiB
C++
100 lines
3.7 KiB
C++
/*
|
|
* Copyright (c) 2021, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Platform.h>
|
|
#include <AK/Random.h>
|
|
#include <AK/UFixedBigInt.h>
|
|
#include <AK/UFixedBigIntDivision.h>
|
|
|
|
#if defined(AK_OS_WINDOWS)
|
|
# include <AK/NumericLimits.h>
|
|
# include <AK/Windows.h>
|
|
# include <bcrypt.h>
|
|
# include <ntstatus.h>
|
|
#endif
|
|
|
|
namespace AK {
|
|
|
|
// NOTE: This function is supposed to always give a random number. If possible it is of good quality, but it can fall
|
|
// back to rand() if it fails on some systems. For high speed you should probably use a different generator.
|
|
// See MathObject::random() from LibJS. Where cryptographic security is needed use LibCrypto/SecureRandom.h.
|
|
void fill_with_random([[maybe_unused]] Bytes bytes)
|
|
{
|
|
#if defined(AK_OS_SERENITY) || defined(AK_OS_ANDROID) || defined(AK_OS_BSD_GENERIC) || defined(AK_OS_HAIKU) || AK_LIBC_GLIBC_PREREQ(2, 36)
|
|
arc4random_buf(bytes.data(), bytes.size());
|
|
#elif defined(OSS_FUZZ)
|
|
#else
|
|
auto fill_with_random_fallback = [&]() {
|
|
for (auto& byte : bytes)
|
|
byte = rand();
|
|
};
|
|
|
|
# if defined(__unix__)
|
|
// The maximum permitted value for the getentropy length argument.
|
|
static constexpr size_t getentropy_length_limit = 256;
|
|
auto iterations = bytes.size() / getentropy_length_limit;
|
|
|
|
for (size_t i = 0; i < iterations; ++i) {
|
|
if (getentropy(bytes.data(), getentropy_length_limit) != 0) {
|
|
fill_with_random_fallback();
|
|
return;
|
|
}
|
|
|
|
bytes = bytes.slice(getentropy_length_limit);
|
|
}
|
|
|
|
if (bytes.is_empty() || getentropy(bytes.data(), bytes.size()) == 0)
|
|
return;
|
|
# elif defined(AK_OS_WINDOWS)
|
|
|
|
if (bytes.size() > NumericLimits<u32>::max()) [[unlikely]] {
|
|
fill_with_random_fallback();
|
|
return;
|
|
}
|
|
|
|
// NOTE: This is more secure than needed. But on modern hardware it be should more than fast enough.
|
|
NTSTATUS result = ::BCryptGenRandom(NULL, bytes.data(), bytes.size(), BCRYPT_USE_SYSTEM_PREFERRED_RNG);
|
|
if (result == STATUS_SUCCESS)
|
|
return;
|
|
# endif
|
|
|
|
fill_with_random_fallback();
|
|
#endif
|
|
}
|
|
|
|
u32 get_random_uniform(u32 max_bounds)
|
|
{
|
|
// If we try to divide all 2**32 numbers into groups of "max_bounds" numbers, we may end up
|
|
// with a group around 2**32-1 that is a bit too small. For this reason, the implementation
|
|
// `arc4random() % max_bounds` would be insufficient. Here we compute the last number of the
|
|
// last "full group". Note that if max_bounds is a divisor of UINT32_MAX,
|
|
// then we end up with UINT32_MAX:
|
|
u32 const max_usable = UINT32_MAX - (static_cast<u64>(UINT32_MAX) + 1) % max_bounds;
|
|
auto random_value = get_random<u32>();
|
|
for (int i = 0; i < 20 && random_value > max_usable; ++i) {
|
|
// By chance we picked a value from the incomplete group. Note that this group has size at
|
|
// most 2**31-1, so picking this group has a chance of less than 50%.
|
|
// In practice, this means that for the worst possible input, there is still only a
|
|
// once-in-a-million chance to get to iteration 20. In theory we should be able to loop
|
|
// forever. Here we prefer marginally imperfect random numbers over weird runtime behavior.
|
|
random_value = get_random<u32>();
|
|
}
|
|
return random_value % max_bounds;
|
|
}
|
|
|
|
u64 get_random_uniform_64(u64 max_bounds)
|
|
{
|
|
// Uses the same algorithm as `get_random_uniform`,
|
|
// by replacing u64 with u128 and u32 with u64.
|
|
u64 const max_usable = UINT64_MAX - static_cast<u64>((static_cast<u128>(UINT64_MAX) + 1) % max_bounds);
|
|
auto random_value = get_random<u64>();
|
|
for (int i = 0; i < 20 && random_value > max_usable; ++i) {
|
|
random_value = get_random<u64>();
|
|
}
|
|
return random_value % max_bounds;
|
|
}
|
|
|
|
}
|