/* * Copyright (c) 2021, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #if defined(AK_OS_WINDOWS) # include # include # include # include #endif namespace AK { // NOTE: This function is supposed to always give a random number. If possible it is of good quality, but it can fall // back to rand() if it fails on some systems. For high speed you should probably use a different generator. // See MathObject::random() from LibJS. Where cryptographic security is needed use LibCrypto/SecureRandom.h. void fill_with_random([[maybe_unused]] Bytes bytes) { #if defined(AK_OS_SERENITY) || defined(AK_OS_ANDROID) || defined(AK_OS_BSD_GENERIC) || defined(AK_OS_HAIKU) || AK_LIBC_GLIBC_PREREQ(2, 36) arc4random_buf(bytes.data(), bytes.size()); #elif defined(OSS_FUZZ) #else auto fill_with_random_fallback = [&]() { for (auto& byte : bytes) byte = rand(); }; # if defined(__unix__) // The maximum permitted value for the getentropy length argument. static constexpr size_t getentropy_length_limit = 256; auto iterations = bytes.size() / getentropy_length_limit; for (size_t i = 0; i < iterations; ++i) { if (getentropy(bytes.data(), getentropy_length_limit) != 0) { fill_with_random_fallback(); return; } bytes = bytes.slice(getentropy_length_limit); } if (bytes.is_empty() || getentropy(bytes.data(), bytes.size()) == 0) return; # elif defined(AK_OS_WINDOWS) if (bytes.size() > NumericLimits::max()) [[unlikely]] { fill_with_random_fallback(); return; } // NOTE: This is more secure than needed. But on modern hardware it be should more than fast enough. NTSTATUS result = ::BCryptGenRandom(NULL, bytes.data(), bytes.size(), BCRYPT_USE_SYSTEM_PREFERRED_RNG); if (result == STATUS_SUCCESS) return; # endif fill_with_random_fallback(); #endif } u32 get_random_uniform(u32 max_bounds) { // If we try to divide all 2**32 numbers into groups of "max_bounds" numbers, we may end up // with a group around 2**32-1 that is a bit too small. For this reason, the implementation // `arc4random() % max_bounds` would be insufficient. Here we compute the last number of the // last "full group". Note that if max_bounds is a divisor of UINT32_MAX, // then we end up with UINT32_MAX: u32 const max_usable = UINT32_MAX - (static_cast(UINT32_MAX) + 1) % max_bounds; auto random_value = get_random(); for (int i = 0; i < 20 && random_value > max_usable; ++i) { // By chance we picked a value from the incomplete group. Note that this group has size at // most 2**31-1, so picking this group has a chance of less than 50%. // In practice, this means that for the worst possible input, there is still only a // once-in-a-million chance to get to iteration 20. In theory we should be able to loop // forever. Here we prefer marginally imperfect random numbers over weird runtime behavior. random_value = get_random(); } return random_value % max_bounds; } u64 get_random_uniform_64(u64 max_bounds) { // Uses the same algorithm as `get_random_uniform`, // by replacing u64 with u128 and u32 with u64. u64 const max_usable = UINT64_MAX - static_cast((static_cast(UINT64_MAX) + 1) % max_bounds); auto random_value = get_random(); for (int i = 0; i < 20 && random_value > max_usable; ++i) { random_value = get_random(); } return random_value % max_bounds; } }