mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-06-08 00:07:34 +09:00

Toolchain and infrastructure: - KUnit '#[test]'s: - Support KUnit-mapped 'assert!' macros. The support that landed last cycle was very basic, and the 'assert!' macros panicked since they were the standard library ones. Now, they are mapped to the KUnit ones in a similar way to how is done for doctests, reusing the infrastructure there. With this, a failing test like: #[test] fn my_first_test() { assert_eq!(42, 43); } will report: # my_first_test: ASSERTION FAILED at rust/kernel/lib.rs:251 Expected 42 == 43 to be true, but is false # my_first_test.speed: normal not ok 1 my_first_test - Support tests with checked 'Result' return types. The return value of test functions that return a 'Result' will be checked, thus one can now easily catch errors when e.g. using the '?' operator in tests. With this, a failing test like: #[test] fn my_test() -> Result { f()?; Ok(()) } will report: # my_test: ASSERTION FAILED at rust/kernel/lib.rs:321 Expected is_test_result_ok(my_test()) to be true, but is false # my_test.speed: normal not ok 1 my_test - Add 'kunit_tests' to the prelude. - Clarify the remaining language unstable features in use. - Compile 'core' with edition 2024 for Rust >= 1.87. - Workaround 'bindgen' issue with forward references to 'enum' types. - objtool: relax slice condition to cover more 'noreturn' functions. - Use absolute paths in macros referencing 'core' and 'kernel' crates. - Skip '-mno-fdpic' flag for bindgen in GCC 32-bit arm builds. - Clean some 'doc_markdown' lint hits -- we may enable it later on. 'kernel' crate: - 'alloc' module: - 'Box': support for type coercion, e.g. 'Box<T>' to 'Box<dyn U>' if 'T' implements 'U'. - 'Vec': implement new methods (prerequisites for nova-core and binder): 'truncate', 'resize', 'clear', 'pop', 'push_within_capacity' (with new error type 'PushError'), 'drain_all', 'retain', 'remove' (with new error type 'RemoveError'), insert_within_capacity' (with new error type 'InsertError'). In addition, simplify 'push' using 'spare_capacity_mut', split 'set_len' into 'inc_len' and 'dec_len', add type invariant 'len <= capacity' and simplify 'truncate' using 'dec_len'. - 'time' module: - Morph the Rust hrtimer subsystem into the Rust timekeeping subsystem, covering delay, sleep, timekeeping, timers. This new subsystem has all the relevant timekeeping C maintainers listed in the entry. - Replace 'Ktime' with 'Delta' and 'Instant' types to represent a duration of time and a point in time. - Temporarily add 'Ktime' to 'hrtimer' module to allow 'hrtimer' to delay converting to 'Instant' and 'Delta'. - 'xarray' module: - Add a Rust abstraction for the 'xarray' data structure. This abstraction allows Rust code to leverage the 'xarray' to store types that implement 'ForeignOwnable'. This support is a dependency for memory backing feature of the Rust null block driver, which is waiting to be merged. - Set up an entry in 'MAINTAINERS' for the XArray Rust support. Patches will go to the new Rust XArray tree and then via the Rust subsystem tree for now. - Allow 'ForeignOwnable' to carry information about the pointed-to type. This helps asserting alignment requirements for the pointer passed to the foreign language. - 'container_of!': retain pointer mut-ness and add a compile-time check of the type of the first parameter ('$field_ptr'). - Support optional message in 'static_assert!'. - Add C FFI types (e.g. 'c_int') to the prelude. - 'str' module: simplify KUnit tests 'format!' macro, convert 'rusttest' tests into KUnit, take advantage of the '-> Result' support in KUnit '#[test]'s. - 'list' module: add examples for 'List', fix path of 'assert_pinned!' (so far unused macro rule). - 'workqueue' module: remove 'HasWork::OFFSET'. - 'page' module: add 'inline' attribute. 'macros' crate: - 'module' macro: place 'cleanup_module()' in '.exit.text' section. 'pin-init' crate: - Add 'Wrapper<T>' trait for creating pin-initializers for wrapper structs with a structurally pinned value such as 'UnsafeCell<T>' or 'MaybeUninit<T>'. - Add 'MaybeZeroable' derive macro to try to derive 'Zeroable', but not error if not all fields implement it. This is needed to derive 'Zeroable' for all bindgen-generated structs. - Add 'unsafe fn cast_[pin_]init()' functions to unsafely change the initialized type of an initializer. These are utilized by the 'Wrapper<T>' implementations. - Add support for visibility in 'Zeroable' derive macro. - Add support for 'union's in 'Zeroable' derive macro. - Upstream dev news: streamline CI, fix some bugs. Add new workflows to check if the user-space version and the one in the kernel tree have diverged. Use the issues tab [1] to track them, which should help folks report and diagnose issues w.r.t. 'pin-init' better. [1] https://github.com/rust-for-linux/pin-init/issues Documentation: - Testing: add docs on the new KUnit '#[test]' tests. - Coding guidelines: explain that '///' vs. '//' applies to private items too. Add section on C FFI types. - Quick Start guide: update Ubuntu instructions and split them into "25.04" and "24.04 LTS and older". And a few other cleanups and improvements. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmhBAvYACgkQGXyLc2ht IW3qvA/+KRTCYKcI6JyUT9TdhRmaaMsQ0/5j6Kx4CfRQPZTSWsXyBEU75yEIZUQD SUGQFwmMAYeAKQD1SumFCRy973VzUO45DyKM+7vuVhKN1ZjnAtv63+31C3UFATlA 8Tm3GCqQEGKl4IER7xI3D/vpZA5FOv+GotjNieF3O9FpHDCvV/JQScq9I2oXQPCt 17kRLww/DTfpf4qiLmxmxHn6nCsbecdfEce1kfjk3nNuE6B2tPf+ddYOwunLEvkB LA4Cr6T1Cy1ovRQgxg9Pdkl/0Rta0tFcsKt1LqPgjR+n95stsHgAzbyMGuUKoeZx u2R2pwlrJt6Xe4CEZgTIRfYWgF81qUzdcPuflcSMDCpH0nTep74A2lIiWUHWZSh4 LbPh7r90Q8YwGKVJiWqLfHUmQBnmTEm3D2gydSExPKJXSzB4Rbv4w4fPF3dhzMtC 4+KvmHKIojFkAdTLt+5rkKipJGo/rghvQvaQr9JOu+QO4vfhkesB4pUWC4sZd9A9 GJBP97ynWAsXGGaeaaSli0b851X+VE/WIDOmPMselbA3rVADChE6HsJnY/wVVeWK jupvAhUExSczDPCluGv8T9EVXvv6+fg3bB5pD6R01NNJe6iE/LIDQ5Gj5rg4qahM EFzMgPj6hMt5McvWI8q1/ym0bzdeC2/cmaV6E14hvphAZoORUKI= =JRqL -----END PGP SIGNATURE----- Merge tag 'rust-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux Pull Rust updates from Miguel Ojeda: "Toolchain and infrastructure: - KUnit '#[test]'s: - Support KUnit-mapped 'assert!' macros. The support that landed last cycle was very basic, and the 'assert!' macros panicked since they were the standard library ones. Now, they are mapped to the KUnit ones in a similar way to how is done for doctests, reusing the infrastructure there. With this, a failing test like: #[test] fn my_first_test() { assert_eq!(42, 43); } will report: # my_first_test: ASSERTION FAILED at rust/kernel/lib.rs:251 Expected 42 == 43 to be true, but is false # my_first_test.speed: normal not ok 1 my_first_test - Support tests with checked 'Result' return types. The return value of test functions that return a 'Result' will be checked, thus one can now easily catch errors when e.g. using the '?' operator in tests. With this, a failing test like: #[test] fn my_test() -> Result { f()?; Ok(()) } will report: # my_test: ASSERTION FAILED at rust/kernel/lib.rs:321 Expected is_test_result_ok(my_test()) to be true, but is false # my_test.speed: normal not ok 1 my_test - Add 'kunit_tests' to the prelude. - Clarify the remaining language unstable features in use. - Compile 'core' with edition 2024 for Rust >= 1.87. - Workaround 'bindgen' issue with forward references to 'enum' types. - objtool: relax slice condition to cover more 'noreturn' functions. - Use absolute paths in macros referencing 'core' and 'kernel' crates. - Skip '-mno-fdpic' flag for bindgen in GCC 32-bit arm builds. - Clean some 'doc_markdown' lint hits -- we may enable it later on. 'kernel' crate: - 'alloc' module: - 'Box': support for type coercion, e.g. 'Box<T>' to 'Box<dyn U>' if 'T' implements 'U'. - 'Vec': implement new methods (prerequisites for nova-core and binder): 'truncate', 'resize', 'clear', 'pop', 'push_within_capacity' (with new error type 'PushError'), 'drain_all', 'retain', 'remove' (with new error type 'RemoveError'), insert_within_capacity' (with new error type 'InsertError'). In addition, simplify 'push' using 'spare_capacity_mut', split 'set_len' into 'inc_len' and 'dec_len', add type invariant 'len <= capacity' and simplify 'truncate' using 'dec_len'. - 'time' module: - Morph the Rust hrtimer subsystem into the Rust timekeeping subsystem, covering delay, sleep, timekeeping, timers. This new subsystem has all the relevant timekeeping C maintainers listed in the entry. - Replace 'Ktime' with 'Delta' and 'Instant' types to represent a duration of time and a point in time. - Temporarily add 'Ktime' to 'hrtimer' module to allow 'hrtimer' to delay converting to 'Instant' and 'Delta'. - 'xarray' module: - Add a Rust abstraction for the 'xarray' data structure. This abstraction allows Rust code to leverage the 'xarray' to store types that implement 'ForeignOwnable'. This support is a dependency for memory backing feature of the Rust null block driver, which is waiting to be merged. - Set up an entry in 'MAINTAINERS' for the XArray Rust support. Patches will go to the new Rust XArray tree and then via the Rust subsystem tree for now. - Allow 'ForeignOwnable' to carry information about the pointed-to type. This helps asserting alignment requirements for the pointer passed to the foreign language. - 'container_of!': retain pointer mut-ness and add a compile-time check of the type of the first parameter ('$field_ptr'). - Support optional message in 'static_assert!'. - Add C FFI types (e.g. 'c_int') to the prelude. - 'str' module: simplify KUnit tests 'format!' macro, convert 'rusttest' tests into KUnit, take advantage of the '-> Result' support in KUnit '#[test]'s. - 'list' module: add examples for 'List', fix path of 'assert_pinned!' (so far unused macro rule). - 'workqueue' module: remove 'HasWork::OFFSET'. - 'page' module: add 'inline' attribute. 'macros' crate: - 'module' macro: place 'cleanup_module()' in '.exit.text' section. 'pin-init' crate: - Add 'Wrapper<T>' trait for creating pin-initializers for wrapper structs with a structurally pinned value such as 'UnsafeCell<T>' or 'MaybeUninit<T>'. - Add 'MaybeZeroable' derive macro to try to derive 'Zeroable', but not error if not all fields implement it. This is needed to derive 'Zeroable' for all bindgen-generated structs. - Add 'unsafe fn cast_[pin_]init()' functions to unsafely change the initialized type of an initializer. These are utilized by the 'Wrapper<T>' implementations. - Add support for visibility in 'Zeroable' derive macro. - Add support for 'union's in 'Zeroable' derive macro. - Upstream dev news: streamline CI, fix some bugs. Add new workflows to check if the user-space version and the one in the kernel tree have diverged. Use the issues tab [1] to track them, which should help folks report and diagnose issues w.r.t. 'pin-init' better. [1] https://github.com/rust-for-linux/pin-init/issues Documentation: - Testing: add docs on the new KUnit '#[test]' tests. - Coding guidelines: explain that '///' vs. '//' applies to private items too. Add section on C FFI types. - Quick Start guide: update Ubuntu instructions and split them into "25.04" and "24.04 LTS and older". And a few other cleanups and improvements" * tag 'rust-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux: (78 commits) rust: list: Fix typo `much` in arc.rs rust: check type of `$ptr` in `container_of!` rust: workqueue: remove HasWork::OFFSET rust: retain pointer mut-ness in `container_of!` Documentation: rust: testing: add docs on the new KUnit `#[test]` tests Documentation: rust: rename `#[test]`s to "`rusttest` host tests" rust: str: take advantage of the `-> Result` support in KUnit `#[test]`'s rust: str: simplify KUnit tests `format!` macro rust: str: convert `rusttest` tests into KUnit rust: add `kunit_tests` to the prelude rust: kunit: support checked `-> Result`s in KUnit `#[test]`s rust: kunit: support KUnit-mapped `assert!` macros in `#[test]`s rust: make section names plural rust: list: fix path of `assert_pinned!` rust: compile libcore with edition 2024 for 1.87+ rust: dma: add missing Markdown code span rust: task: add missing Markdown code spans and intra-doc links rust: pci: fix docs related to missing Markdown code spans rust: alloc: add missing Markdown code span rust: alloc: add missing Markdown code spans ...
559 lines
19 KiB
Rust
559 lines
19 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Generic devices that are part of the kernel's driver model.
|
|
//!
|
|
//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
|
|
|
|
use crate::{
|
|
bindings,
|
|
str::CStr,
|
|
types::{ARef, Opaque},
|
|
};
|
|
use core::{fmt, marker::PhantomData, ptr};
|
|
|
|
#[cfg(CONFIG_PRINTK)]
|
|
use crate::c_str;
|
|
|
|
/// A reference-counted device.
|
|
///
|
|
/// This structure represents the Rust abstraction for a C `struct device`. This implementation
|
|
/// abstracts the usage of an already existing C `struct device` within Rust code that we get
|
|
/// passed from the C side.
|
|
///
|
|
/// An instance of this abstraction can be obtained temporarily or permanent.
|
|
///
|
|
/// A temporary one is bound to the lifetime of the C `struct device` pointer used for creation.
|
|
/// A permanent instance is always reference-counted and hence not restricted by any lifetime
|
|
/// boundaries.
|
|
///
|
|
/// For subsystems it is recommended to create a permanent instance to wrap into a subsystem
|
|
/// specific device structure (e.g. `pci::Device`). This is useful for passing it to drivers in
|
|
/// `T::probe()`, such that a driver can store the `ARef<Device>` (equivalent to storing a
|
|
/// `struct device` pointer in a C driver) for arbitrary purposes, e.g. allocating DMA coherent
|
|
/// memory.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
|
|
///
|
|
/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
|
|
/// that the allocation remains valid at least until the matching call to `put_device`.
|
|
///
|
|
/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
|
|
/// dropped from any thread.
|
|
#[repr(transparent)]
|
|
pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
|
|
|
|
impl Device {
|
|
/// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
|
|
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
|
|
/// can't drop to zero, for the duration of this function call.
|
|
///
|
|
/// It must also be ensured that `bindings::device::release` can be called from any thread.
|
|
/// While not officially documented, this should be the case for any `struct device`.
|
|
pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
|
|
// SAFETY: By the safety requirements ptr is valid
|
|
unsafe { Self::as_ref(ptr) }.into()
|
|
}
|
|
}
|
|
|
|
impl<Ctx: DeviceContext> Device<Ctx> {
|
|
/// Obtain the raw `struct device *`.
|
|
pub(crate) fn as_raw(&self) -> *mut bindings::device {
|
|
self.0.get()
|
|
}
|
|
|
|
/// Returns a reference to the parent device, if any.
|
|
#[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
|
|
pub(crate) fn parent(&self) -> Option<&Self> {
|
|
// SAFETY:
|
|
// - By the type invariant `self.as_raw()` is always valid.
|
|
// - The parent device is only ever set at device creation.
|
|
let parent = unsafe { (*self.as_raw()).parent };
|
|
|
|
if parent.is_null() {
|
|
None
|
|
} else {
|
|
// SAFETY:
|
|
// - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
|
|
// - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
|
|
// reference count of its parent.
|
|
Some(unsafe { Self::as_ref(parent) })
|
|
}
|
|
}
|
|
|
|
/// Convert a raw C `struct device` pointer to a `&'a Device`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
|
|
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
|
|
/// can't drop to zero, for the duration of this function call and the entire duration when the
|
|
/// returned reference exists.
|
|
pub unsafe fn as_ref<'a>(ptr: *mut bindings::device) -> &'a Self {
|
|
// SAFETY: Guaranteed by the safety requirements of the function.
|
|
unsafe { &*ptr.cast() }
|
|
}
|
|
|
|
/// Prints an emergency-level message (level 0) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_emerg`].
|
|
///
|
|
/// [`dev_emerg`]: crate::dev_emerg
|
|
pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_EMERG, args) };
|
|
}
|
|
|
|
/// Prints an alert-level message (level 1) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_alert`].
|
|
///
|
|
/// [`dev_alert`]: crate::dev_alert
|
|
pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_ALERT, args) };
|
|
}
|
|
|
|
/// Prints a critical-level message (level 2) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_crit`].
|
|
///
|
|
/// [`dev_crit`]: crate::dev_crit
|
|
pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_CRIT, args) };
|
|
}
|
|
|
|
/// Prints an error-level message (level 3) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_err`].
|
|
///
|
|
/// [`dev_err`]: crate::dev_err
|
|
pub fn pr_err(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_ERR, args) };
|
|
}
|
|
|
|
/// Prints a warning-level message (level 4) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_warn`].
|
|
///
|
|
/// [`dev_warn`]: crate::dev_warn
|
|
pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_WARNING, args) };
|
|
}
|
|
|
|
/// Prints a notice-level message (level 5) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_notice`].
|
|
///
|
|
/// [`dev_notice`]: crate::dev_notice
|
|
pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_NOTICE, args) };
|
|
}
|
|
|
|
/// Prints an info-level message (level 6) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_info`].
|
|
///
|
|
/// [`dev_info`]: crate::dev_info
|
|
pub fn pr_info(&self, args: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_INFO, args) };
|
|
}
|
|
|
|
/// Prints a debug-level message (level 7) prefixed with device information.
|
|
///
|
|
/// More details are available from [`dev_dbg`].
|
|
///
|
|
/// [`dev_dbg`]: crate::dev_dbg
|
|
pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
|
|
if cfg!(debug_assertions) {
|
|
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
|
|
unsafe { self.printk(bindings::KERN_DEBUG, args) };
|
|
}
|
|
}
|
|
|
|
/// Prints the provided message to the console.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers must ensure that `klevel` is null-terminated; in particular, one of the
|
|
/// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
|
|
#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
|
|
unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
|
|
// SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
|
|
// is valid because `self` is valid. The "%pA" format string expects a pointer to
|
|
// `fmt::Arguments`, which is what we're passing as the last argument.
|
|
#[cfg(CONFIG_PRINTK)]
|
|
unsafe {
|
|
bindings::_dev_printk(
|
|
klevel as *const _ as *const crate::ffi::c_char,
|
|
self.as_raw(),
|
|
c_str!("%pA").as_char_ptr(),
|
|
&msg as *const _ as *const crate::ffi::c_void,
|
|
)
|
|
};
|
|
}
|
|
|
|
/// Checks if property is present or not.
|
|
pub fn property_present(&self, name: &CStr) -> bool {
|
|
// SAFETY: By the invariant of `CStr`, `name` is null-terminated.
|
|
unsafe { bindings::device_property_present(self.as_raw().cast_const(), name.as_char_ptr()) }
|
|
}
|
|
}
|
|
|
|
// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
|
|
// argument.
|
|
kernel::impl_device_context_deref!(unsafe { Device });
|
|
kernel::impl_device_context_into_aref!(Device);
|
|
|
|
// SAFETY: Instances of `Device` are always reference-counted.
|
|
unsafe impl crate::types::AlwaysRefCounted for Device {
|
|
fn inc_ref(&self) {
|
|
// SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
|
|
unsafe { bindings::get_device(self.as_raw()) };
|
|
}
|
|
|
|
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
|
|
// SAFETY: The safety requirements guarantee that the refcount is non-zero.
|
|
unsafe { bindings::put_device(obj.cast().as_ptr()) }
|
|
}
|
|
}
|
|
|
|
// SAFETY: As by the type invariant `Device` can be sent to any thread.
|
|
unsafe impl Send for Device {}
|
|
|
|
// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
|
|
// synchronization in `struct device`.
|
|
unsafe impl Sync for Device {}
|
|
|
|
/// Marker trait for the context of a bus specific device.
|
|
///
|
|
/// Some functions of a bus specific device should only be called from a certain context, i.e. bus
|
|
/// callbacks, such as `probe()`.
|
|
///
|
|
/// This is the marker trait for structures representing the context of a bus specific device.
|
|
pub trait DeviceContext: private::Sealed {}
|
|
|
|
/// The [`Normal`] context is the context of a bus specific device when it is not an argument of
|
|
/// any bus callback.
|
|
pub struct Normal;
|
|
|
|
/// The [`Core`] context is the context of a bus specific device when it is supplied as argument of
|
|
/// any of the bus callbacks, such as `probe()`.
|
|
pub struct Core;
|
|
|
|
/// The [`Bound`] context is the context of a bus specific device reference when it is guaranteed to
|
|
/// be bound for the duration of its lifetime.
|
|
pub struct Bound;
|
|
|
|
mod private {
|
|
pub trait Sealed {}
|
|
|
|
impl Sealed for super::Bound {}
|
|
impl Sealed for super::Core {}
|
|
impl Sealed for super::Normal {}
|
|
}
|
|
|
|
impl DeviceContext for Bound {}
|
|
impl DeviceContext for Core {}
|
|
impl DeviceContext for Normal {}
|
|
|
|
/// # Safety
|
|
///
|
|
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
|
|
/// generic argument of `$device`.
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! __impl_device_context_deref {
|
|
(unsafe { $device:ident, $src:ty => $dst:ty }) => {
|
|
impl ::core::ops::Deref for $device<$src> {
|
|
type Target = $device<$dst>;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
let ptr: *const Self = self;
|
|
|
|
// CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
|
|
// safety requirement of the macro.
|
|
let ptr = ptr.cast::<Self::Target>();
|
|
|
|
// SAFETY: `ptr` was derived from `&self`.
|
|
unsafe { &*ptr }
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
|
|
/// specific) device.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
|
|
/// generic argument of `$device`.
|
|
#[macro_export]
|
|
macro_rules! impl_device_context_deref {
|
|
(unsafe { $device:ident }) => {
|
|
// SAFETY: This macro has the exact same safety requirement as
|
|
// `__impl_device_context_deref!`.
|
|
::kernel::__impl_device_context_deref!(unsafe {
|
|
$device,
|
|
$crate::device::Core => $crate::device::Bound
|
|
});
|
|
|
|
// SAFETY: This macro has the exact same safety requirement as
|
|
// `__impl_device_context_deref!`.
|
|
::kernel::__impl_device_context_deref!(unsafe {
|
|
$device,
|
|
$crate::device::Bound => $crate::device::Normal
|
|
});
|
|
};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! __impl_device_context_into_aref {
|
|
($src:ty, $device:tt) => {
|
|
impl ::core::convert::From<&$device<$src>> for $crate::types::ARef<$device> {
|
|
fn from(dev: &$device<$src>) -> Self {
|
|
(&**dev).into()
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
|
|
/// `ARef<Device>`.
|
|
#[macro_export]
|
|
macro_rules! impl_device_context_into_aref {
|
|
($device:tt) => {
|
|
::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
|
|
::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
|
|
};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! dev_printk {
|
|
($method:ident, $dev:expr, $($f:tt)*) => {
|
|
{
|
|
($dev).$method(::core::format_args!($($f)*));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Prints an emergency-level message (level 0) prefixed with device information.
|
|
///
|
|
/// This level should be used if the system is unusable.
|
|
///
|
|
/// Equivalent to the kernel's `dev_emerg` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_emerg!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_emerg {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
|
|
}
|
|
|
|
/// Prints an alert-level message (level 1) prefixed with device information.
|
|
///
|
|
/// This level should be used if action must be taken immediately.
|
|
///
|
|
/// Equivalent to the kernel's `dev_alert` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_alert!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_alert {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
|
|
}
|
|
|
|
/// Prints a critical-level message (level 2) prefixed with device information.
|
|
///
|
|
/// This level should be used in critical conditions.
|
|
///
|
|
/// Equivalent to the kernel's `dev_crit` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_crit!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_crit {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
|
|
}
|
|
|
|
/// Prints an error-level message (level 3) prefixed with device information.
|
|
///
|
|
/// This level should be used in error conditions.
|
|
///
|
|
/// Equivalent to the kernel's `dev_err` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_err!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_err {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
|
|
}
|
|
|
|
/// Prints a warning-level message (level 4) prefixed with device information.
|
|
///
|
|
/// This level should be used in warning conditions.
|
|
///
|
|
/// Equivalent to the kernel's `dev_warn` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_warn!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_warn {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
|
|
}
|
|
|
|
/// Prints a notice-level message (level 5) prefixed with device information.
|
|
///
|
|
/// This level should be used in normal but significant conditions.
|
|
///
|
|
/// Equivalent to the kernel's `dev_notice` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_notice!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_notice {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
|
|
}
|
|
|
|
/// Prints an info-level message (level 6) prefixed with device information.
|
|
///
|
|
/// This level should be used for informational messages.
|
|
///
|
|
/// Equivalent to the kernel's `dev_info` macro.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_info!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_info {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
|
|
}
|
|
|
|
/// Prints a debug-level message (level 7) prefixed with device information.
|
|
///
|
|
/// This level should be used for debug messages.
|
|
///
|
|
/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
|
|
///
|
|
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
|
|
/// [`core::fmt`] and [`std::format!`].
|
|
///
|
|
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
|
|
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::device::Device;
|
|
///
|
|
/// fn example(dev: &Device) {
|
|
/// dev_dbg!(dev, "hello {}\n", "there");
|
|
/// }
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! dev_dbg {
|
|
($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
|
|
}
|