mirror of
https://github.com/VSadov/Satori.git
synced 2025-06-11 10:18:21 +09:00

Use a separate thread for tiered compilation background work - Makes it easier to manage how much time is spend for performing background work like rejitting and allows yielding more frequently with just Sleep without incurring thread pool overhead, which is useful in CPU-limited cases - A min/max range is determined for how long background work will be done before yielding the thread. The max is the same as before, 50 ms. For now the min is `processor count` ms (capped to the max), such that in CPU-limited cases the thread would yield more frequently in order to not monopolize too much of the limited CPU resources for background work, and in cases with a larger number of processors where the background work is typically less intrusive to foreground work it would yield less frequently. - At the same time, progress should be made on background work such that steady-state perf would be reached in reasonable time. Yielding too frequently can slow down the background work too much. The sleep duration is measured to identify oversubscribed situations to yield less frequently and make faster progress on the background work. - Due to less time spent rejitting in some CPU-limited cases, steady-state performance may be reached a bit later in favor of fewer spikes along the way - When the portable thread pool is enabled, a side effect of using a managed worker thread for tiering background work was that several GC-heavy microbenchmarks regressed. Tiering was the only thing using the thread pool in those tests and stack-walking the managed thread was slower due to the presence of GC refs. It's not too concerning, the benchmarks are just measuring something different from before, but in any case this change also resolves that issue. Fixes https://github.com/dotnet/runtime/issues/44211.
1109 lines
41 KiB
C++
1109 lines
41 KiB
C++
// Licensed to the .NET Foundation under one or more agreements.
|
|
// The .NET Foundation licenses this file to you under the MIT license.
|
|
// ===========================================================================
|
|
// File: TieredCompilation.CPP
|
|
//
|
|
// ===========================================================================
|
|
|
|
|
|
|
|
#include "common.h"
|
|
#include "excep.h"
|
|
#include "log.h"
|
|
#include "win32threadpool.h"
|
|
#include "threadsuspend.h"
|
|
#include "tieredcompilation.h"
|
|
|
|
// TieredCompilationManager determines which methods should be recompiled and
|
|
// how they should be recompiled to best optimize the running code. It then
|
|
// handles logistics of getting new code created and installed.
|
|
//
|
|
//
|
|
// # Important entrypoints in this code:
|
|
//
|
|
//
|
|
// a) .ctor - called once during AppDomain initialization
|
|
// b) HandleCallCountingForFirstCall(...) - called when a method's code version is being
|
|
// invoked for the first time.
|
|
//
|
|
// # Overall workflow
|
|
//
|
|
// Methods initially call into HandleCallCountingForFirstCall() and once the call count exceeds
|
|
// a fixed limit we queue work on to our internal list of methods needing to
|
|
// be recompiled (m_methodsToOptimize). If there is currently no thread
|
|
// servicing our queue asynchronously then we use the runtime threadpool
|
|
// QueueUserWorkItem to recruit one. During the callback for each threadpool work
|
|
// item we handle as many methods as possible in a fixed period of time, then
|
|
// queue another threadpool work item if m_methodsToOptimize hasn't been drained.
|
|
//
|
|
// The background thread enters at StaticBackgroundWorkCallback(), enters the
|
|
// appdomain, and then begins calling OptimizeMethod on each method in the
|
|
// queue. For each method we jit it, then update the precode so that future
|
|
// entrypoint callers will run the new code.
|
|
//
|
|
// # Error handling
|
|
//
|
|
// The overall principle is don't swallow terminal failures that may have corrupted the
|
|
// process (AV for example), but otherwise for any transient issue or functional limitation
|
|
// that prevents us from optimizing log it for diagnostics and then back out gracefully,
|
|
// continuing to run the less optimal code. The feature should be constructed so that
|
|
// errors are limited to OS resource exhaustion or poorly behaved managed code
|
|
// (for example within an AssemblyResolve event or static constructor triggered by the JIT).
|
|
|
|
#if defined(FEATURE_TIERED_COMPILATION) && !defined(DACCESS_COMPILE)
|
|
|
|
CrstStatic TieredCompilationManager::s_lock;
|
|
#ifdef _DEBUG
|
|
Thread *TieredCompilationManager::s_backgroundWorkerThread = nullptr;
|
|
#endif
|
|
CLREvent TieredCompilationManager::s_backgroundWorkAvailableEvent;
|
|
bool TieredCompilationManager::s_isBackgroundWorkerRunning = false;
|
|
bool TieredCompilationManager::s_isBackgroundWorkerProcessingWork = false;
|
|
|
|
// Called at AppDomain construction
|
|
TieredCompilationManager::TieredCompilationManager() :
|
|
m_countOfMethodsToOptimize(0),
|
|
m_countOfNewMethodsCalledDuringDelay(0),
|
|
m_methodsPendingCountingForTier1(nullptr),
|
|
m_tier1CallCountingCandidateMethodRecentlyRecorded(false),
|
|
m_isPendingCallCountingCompletion(false),
|
|
m_recentlyRequestedCallCountingCompletion(false)
|
|
{
|
|
WRAPPER_NO_CONTRACT;
|
|
// On Unix, we can reach here before EEConfig is initialized, so defer config-based initialization to Init()
|
|
}
|
|
|
|
// Called at AppDomain Init
|
|
void TieredCompilationManager::Init()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
GC_NOTRIGGER;
|
|
CAN_TAKE_LOCK;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
}
|
|
|
|
#endif // FEATURE_TIERED_COMPILATION && !DACCESS_COMPILE
|
|
|
|
NativeCodeVersion::OptimizationTier TieredCompilationManager::GetInitialOptimizationTier(PTR_MethodDesc pMethodDesc)
|
|
{
|
|
WRAPPER_NO_CONTRACT;
|
|
_ASSERTE(pMethodDesc != NULL);
|
|
|
|
#ifdef FEATURE_TIERED_COMPILATION
|
|
if (!pMethodDesc->IsEligibleForTieredCompilation())
|
|
{
|
|
// The optimization tier is not used
|
|
return NativeCodeVersion::OptimizationTierOptimized;
|
|
}
|
|
|
|
if (pMethodDesc->RequestedAggressiveOptimization())
|
|
{
|
|
// Methods flagged with MethodImplOptions.AggressiveOptimization start with and stay at tier 1
|
|
return NativeCodeVersion::OptimizationTier1;
|
|
}
|
|
|
|
if (!pMethodDesc->GetLoaderAllocator()->GetCallCountingManager()->IsCallCountingEnabled(NativeCodeVersion(pMethodDesc)))
|
|
{
|
|
// Tier 0 call counting may have been disabled for several reasons, the intention is to start with and stay at an
|
|
// optimized tier
|
|
return NativeCodeVersion::OptimizationTierOptimized;
|
|
}
|
|
|
|
return NativeCodeVersion::OptimizationTier0;
|
|
#else
|
|
return NativeCodeVersion::OptimizationTierOptimized;
|
|
#endif
|
|
}
|
|
|
|
#if defined(FEATURE_TIERED_COMPILATION) && !defined(DACCESS_COMPILE)
|
|
|
|
void TieredCompilationManager::HandleCallCountingForFirstCall(MethodDesc* pMethodDesc)
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(pMethodDesc != nullptr);
|
|
_ASSERTE(pMethodDesc->IsEligibleForTieredCompilation());
|
|
_ASSERTE(g_pConfig->TieredCompilation_CallCountingDelayMs() != 0);
|
|
|
|
// An exception here (OOM) would mean that the method's calls would not be counted and it would not be promoted. A
|
|
// consideration is that an attempt can be made to reset the code entry point on exception (which can also OOM). Doesn't
|
|
// seem worth it, the exception is propagated and there are other cases where a method may not be promoted due to OOM.
|
|
bool createBackgroundWorker;
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
SArray<MethodDesc *> *methodsPendingCounting = m_methodsPendingCountingForTier1;
|
|
_ASSERTE((methodsPendingCounting != nullptr) == IsTieringDelayActive());
|
|
if (methodsPendingCounting != nullptr)
|
|
{
|
|
methodsPendingCounting->Append(pMethodDesc);
|
|
++m_countOfNewMethodsCalledDuringDelay;
|
|
|
|
if (!m_tier1CallCountingCandidateMethodRecentlyRecorded)
|
|
{
|
|
// Delay call counting for currently recoded methods further
|
|
m_tier1CallCountingCandidateMethodRecentlyRecorded = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
NewHolder<SArray<MethodDesc *>> methodsPendingCountingHolder = new SArray<MethodDesc *>();
|
|
methodsPendingCountingHolder->Preallocate(64);
|
|
|
|
methodsPendingCountingHolder->Append(pMethodDesc);
|
|
++m_countOfNewMethodsCalledDuringDelay;
|
|
|
|
m_methodsPendingCountingForTier1 = methodsPendingCountingHolder.Extract();
|
|
_ASSERTE(!m_tier1CallCountingCandidateMethodRecentlyRecorded);
|
|
_ASSERTE(IsTieringDelayActive());
|
|
|
|
// The thread is in a GC_NOTRIGGER scope here. If the background worker is already running, we can schedule it inside
|
|
// the same lock without triggering a GC.
|
|
createBackgroundWorker = !TryScheduleBackgroundWorkerWithoutGCTrigger_Locked();
|
|
}
|
|
|
|
if (createBackgroundWorker)
|
|
{
|
|
// Elsewhere, the tiered compilation lock is taken inside the code versioning lock. The code versioning lock is an
|
|
// unsafe any-GC-mode lock, so the tiering lock is also that type of lock. Inside that type of lock, there is an
|
|
// implicit GC_NOTRIGGER contract. So, a thread cannot be created inside the tiering lock since it may GC_TRIGGERS. At
|
|
// this point, this is the only thread that may attempt creating the background worker thread.
|
|
EX_TRY
|
|
{
|
|
CreateBackgroundWorker();
|
|
}
|
|
EX_CATCH
|
|
{
|
|
// Since the tiering lock was released and reacquired, other methods may have been recorded in-between. Just
|
|
// deactivate the tiering delay. Any methods that have been recorded would not have their calls be counted and
|
|
// would not be promoted (due to the small window, there shouldn't be many of those). See consideration above in a
|
|
// similar exception case.
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
_ASSERTE(IsTieringDelayActive());
|
|
m_tier1CallCountingCandidateMethodRecentlyRecorded = false;
|
|
_ASSERTE(m_methodsPendingCountingForTier1 != nullptr);
|
|
delete m_methodsPendingCountingForTier1;
|
|
m_methodsPendingCountingForTier1 = nullptr;
|
|
_ASSERTE(!IsTieringDelayActive());
|
|
}
|
|
|
|
EX_RETHROW;
|
|
}
|
|
EX_END_CATCH(RethrowTerminalExceptions);
|
|
}
|
|
|
|
if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
|
|
{
|
|
ETW::CompilationLog::TieredCompilation::Runtime::SendPause();
|
|
}
|
|
}
|
|
|
|
bool TieredCompilationManager::TrySetCodeEntryPointAndRecordMethodForCallCounting(MethodDesc* pMethodDesc, PCODE codeEntryPoint)
|
|
{
|
|
WRAPPER_NO_CONTRACT;
|
|
_ASSERTE(pMethodDesc != nullptr);
|
|
_ASSERTE(pMethodDesc->IsEligibleForTieredCompilation());
|
|
_ASSERTE(codeEntryPoint != NULL);
|
|
|
|
if (!IsTieringDelayActive())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
if (!IsTieringDelayActive())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Set the code entry point before recording the method for call counting to avoid a race. Otherwise, the tiering delay may
|
|
// expire and enable call counting for the method before the entry point is set here, in which case calls to the method
|
|
// would not be counted anymore.
|
|
pMethodDesc->SetCodeEntryPoint(codeEntryPoint);
|
|
_ASSERTE(m_methodsPendingCountingForTier1 != nullptr);
|
|
m_methodsPendingCountingForTier1->Append(pMethodDesc);
|
|
return true;
|
|
}
|
|
|
|
void TieredCompilationManager::AsyncPromoteToTier1(
|
|
NativeCodeVersion tier0NativeCodeVersion,
|
|
bool *createTieringBackgroundWorkerRef)
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_NOTRIGGER;
|
|
MODE_ANY;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(CodeVersionManager::IsLockOwnedByCurrentThread());
|
|
_ASSERTE(!tier0NativeCodeVersion.IsNull());
|
|
_ASSERTE(tier0NativeCodeVersion.GetOptimizationTier() == NativeCodeVersion::OptimizationTier0);
|
|
_ASSERTE(createTieringBackgroundWorkerRef != nullptr);
|
|
|
|
NativeCodeVersion t1NativeCodeVersion;
|
|
HRESULT hr;
|
|
|
|
// Add an inactive native code entry in the versioning table to track the tier1
|
|
// compilation we are going to create. This entry binds the compilation to a
|
|
// particular version of the IL code regardless of any changes that may
|
|
// occur between now and when jitting completes. If the IL does change in that
|
|
// interval the new code entry won't be activated.
|
|
MethodDesc *pMethodDesc = tier0NativeCodeVersion.GetMethodDesc();
|
|
ILCodeVersion ilCodeVersion = tier0NativeCodeVersion.GetILCodeVersion();
|
|
_ASSERTE(!ilCodeVersion.HasAnyOptimizedNativeCodeVersion(tier0NativeCodeVersion));
|
|
hr = ilCodeVersion.AddNativeCodeVersion(pMethodDesc, NativeCodeVersion::OptimizationTier1, &t1NativeCodeVersion);
|
|
if (FAILED(hr))
|
|
{
|
|
ThrowHR(hr);
|
|
}
|
|
|
|
// Insert the method into the optimization queue and trigger a thread to service
|
|
// the queue if needed.
|
|
SListElem<NativeCodeVersion>* pMethodListItem = new SListElem<NativeCodeVersion>(t1NativeCodeVersion);
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
m_methodsToOptimize.InsertTail(pMethodListItem);
|
|
++m_countOfMethodsToOptimize;
|
|
|
|
LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::AsyncPromoteToTier1 Method=0x%pM (%s::%s), code version id=0x%x queued\n",
|
|
pMethodDesc, pMethodDesc->m_pszDebugClassName, pMethodDesc->m_pszDebugMethodName,
|
|
t1NativeCodeVersion.GetVersionId()));
|
|
|
|
// The thread is in a GC_NOTRIGGER scope here. If the background worker is already running, we can schedule it inside
|
|
// the same lock without triggering a GC.
|
|
if (TryScheduleBackgroundWorkerWithoutGCTrigger_Locked())
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
// This function is called from a GC_NOTRIGGER scope and creating the background worker (creating a thread) may GC_TRIGGERS.
|
|
// The caller needs to create the background worker after leaving the GC_NOTRIGGER scope. The contract is that the caller
|
|
// must make an attempt to create the background worker in any normal path. In the event of an atypical exception (eg. OOM),
|
|
// the background worker may not be created and would have to be tried again the next time some background work is queued.
|
|
*createTieringBackgroundWorkerRef = true;
|
|
}
|
|
|
|
bool TieredCompilationManager::TryScheduleBackgroundWorkerWithoutGCTrigger_Locked()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
NOTHROW;
|
|
GC_NOTRIGGER;
|
|
MODE_ANY;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(IsLockOwnedByCurrentThread());
|
|
|
|
if (s_isBackgroundWorkerProcessingWork)
|
|
{
|
|
_ASSERTE(s_isBackgroundWorkerRunning);
|
|
return true;
|
|
}
|
|
|
|
if (s_isBackgroundWorkerRunning)
|
|
{
|
|
s_isBackgroundWorkerProcessingWork = true;
|
|
s_backgroundWorkAvailableEvent.Set();
|
|
return true;
|
|
}
|
|
|
|
s_isBackgroundWorkerRunning = true;
|
|
s_isBackgroundWorkerProcessingWork = true;
|
|
return false; // it's the caller's responsibility to call CreateBackgroundWorker() after leaving the GC_NOTRIGGER region
|
|
}
|
|
|
|
void TieredCompilationManager::CreateBackgroundWorker()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(!IsLockOwnedByCurrentThread());
|
|
_ASSERTE(s_isBackgroundWorkerRunning);
|
|
_ASSERTE(s_isBackgroundWorkerProcessingWork);
|
|
_ASSERTE(s_backgroundWorkerThread == nullptr);
|
|
|
|
EX_TRY
|
|
{
|
|
if (!s_backgroundWorkAvailableEvent.IsValid())
|
|
{
|
|
// An auto-reset event is used since it's a bit easier to manage and felt more natural in this case. It is also
|
|
// possible to use a manual-reset event instead, though there doesn't appear to be anything to gain from doing so.
|
|
s_backgroundWorkAvailableEvent.CreateAutoEvent(false);
|
|
}
|
|
|
|
Thread *newThread = SetupUnstartedThread();
|
|
_ASSERTE(newThread != nullptr);
|
|
INDEBUG(s_backgroundWorkerThread = newThread);
|
|
#ifdef FEATURE_COMINTEROP
|
|
newThread->SetApartment(Thread::AS_InMTA);
|
|
#endif
|
|
newThread->SetBackground(true);
|
|
|
|
if (!newThread->CreateNewThread(0, BackgroundWorkerBootstrapper0, newThread, W(".NET Tiered Compilation Worker")))
|
|
{
|
|
newThread->DecExternalCount(false);
|
|
ThrowOutOfMemory();
|
|
}
|
|
|
|
newThread->StartThread();
|
|
}
|
|
EX_CATCH
|
|
{
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
s_isBackgroundWorkerProcessingWork = false;
|
|
s_isBackgroundWorkerRunning = false;
|
|
INDEBUG(s_backgroundWorkerThread = nullptr);
|
|
}
|
|
|
|
EX_RETHROW;
|
|
}
|
|
EX_END_CATCH(RethrowTerminalExceptions);
|
|
}
|
|
|
|
DWORD WINAPI TieredCompilationManager::BackgroundWorkerBootstrapper0(LPVOID args)
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(args != nullptr);
|
|
Thread *thread = (Thread *)args;
|
|
_ASSERTE(s_backgroundWorkerThread == thread);
|
|
|
|
if (!thread->HasStarted())
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
s_isBackgroundWorkerProcessingWork = false;
|
|
s_isBackgroundWorkerRunning = false;
|
|
INDEBUG(s_backgroundWorkerThread = nullptr);
|
|
return 0;
|
|
}
|
|
|
|
_ASSERTE(GetThread() == thread);
|
|
ManagedThreadBase::KickOff(BackgroundWorkerBootstrapper1, nullptr);
|
|
|
|
GCX_PREEMP_NO_DTOR();
|
|
|
|
DestroyThread(thread);
|
|
return 0;
|
|
}
|
|
|
|
void TieredCompilationManager::BackgroundWorkerBootstrapper1(LPVOID)
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_COOPERATIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
GCX_PREEMP();
|
|
GetAppDomain()->GetTieredCompilationManager()->BackgroundWorkerStart();
|
|
}
|
|
|
|
void TieredCompilationManager::BackgroundWorkerStart()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(s_backgroundWorkAvailableEvent.IsValid());
|
|
|
|
DWORD timeoutMs = g_pConfig->TieredCompilation_BackgroundWorkerTimeoutMs();
|
|
DWORD delayMs = g_pConfig->TieredCompilation_CallCountingDelayMs();
|
|
|
|
int processorCount;
|
|
#ifndef TARGET_UNIX
|
|
CPUGroupInfo::EnsureInitialized();
|
|
if (CPUGroupInfo::CanEnableGCCPUGroups() && CPUGroupInfo::CanEnableThreadUseAllCpuGroups())
|
|
{
|
|
processorCount = CPUGroupInfo::GetNumActiveProcessors();
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
processorCount = GetCurrentProcessCpuCount();
|
|
}
|
|
_ASSERTE(processorCount > 0);
|
|
|
|
LARGE_INTEGER li;
|
|
QueryPerformanceFrequency(&li);
|
|
UINT64 ticksPerS = li.QuadPart;
|
|
UINT64 maxWorkDurationTicks = ticksPerS * 50 / 1000; // 50 ms
|
|
UINT64 minWorkDurationTicks = min(ticksPerS * processorCount / 1000, maxWorkDurationTicks); // <proc count> ms (capped)
|
|
UINT64 workDurationTicks = minWorkDurationTicks;
|
|
|
|
while (true)
|
|
{
|
|
_ASSERTE(s_isBackgroundWorkerRunning);
|
|
_ASSERTE(s_isBackgroundWorkerProcessingWork);
|
|
|
|
if (IsTieringDelayActive())
|
|
{
|
|
do
|
|
{
|
|
ClrSleepEx(delayMs, false);
|
|
} while (!TryDeactivateTieringDelay());
|
|
}
|
|
|
|
// Don't want to perform background work as soon as it is scheduled if there is possibly more important work that could
|
|
// be done. Some operating systems may also give a thread woken by a signal higher priority temporarily, which on a
|
|
// CPU-limited environment may lead to rejitting a method as soon as it's promoted, effectively in the foreground.
|
|
ClrSleepEx(0, false);
|
|
|
|
if (IsTieringDelayActive())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if ((m_isPendingCallCountingCompletion || m_countOfMethodsToOptimize != 0) &&
|
|
!DoBackgroundWork(&workDurationTicks, minWorkDurationTicks, maxWorkDurationTicks))
|
|
{
|
|
// Background work was interrupted due to the tiering delay being activated
|
|
_ASSERTE(IsTieringDelayActive());
|
|
continue;
|
|
}
|
|
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
if (IsTieringDelayActive() || m_isPendingCallCountingCompletion || m_countOfMethodsToOptimize != 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
s_isBackgroundWorkerProcessingWork = false;
|
|
}
|
|
|
|
// Wait for the worker to be scheduled again
|
|
DWORD waitResult = s_backgroundWorkAvailableEvent.Wait(timeoutMs, false);
|
|
if (waitResult == WAIT_OBJECT_0)
|
|
{
|
|
continue;
|
|
}
|
|
_ASSERTE(waitResult == WAIT_TIMEOUT);
|
|
|
|
// The wait timed out, see if the worker can exit
|
|
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
if (s_isBackgroundWorkerProcessingWork)
|
|
{
|
|
// The background worker got scheduled again just as the wait timed out. The event would have been signaled just
|
|
// after the wait had timed out, so reset it and continue processing work.
|
|
s_backgroundWorkAvailableEvent.Reset();
|
|
continue;
|
|
}
|
|
|
|
s_isBackgroundWorkerRunning = false;
|
|
INDEBUG(s_backgroundWorkerThread = nullptr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool TieredCompilationManager::IsTieringDelayActive()
|
|
{
|
|
LIMITED_METHOD_CONTRACT;
|
|
return m_methodsPendingCountingForTier1 != nullptr;
|
|
}
|
|
|
|
bool TieredCompilationManager::TryDeactivateTieringDelay()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(GetThread() == s_backgroundWorkerThread);
|
|
|
|
SArray<MethodDesc *> *methodsPendingCounting = nullptr;
|
|
UINT32 countOfNewMethodsCalledDuringDelay = 0;
|
|
{
|
|
// It's possible for the timer to tick before it is recorded that the delay is in effect. This lock guarantees that
|
|
// the delay is in effect.
|
|
LockHolder tieredCompilationLockHolder;
|
|
_ASSERTE(IsTieringDelayActive());
|
|
|
|
if (m_tier1CallCountingCandidateMethodRecentlyRecorded)
|
|
{
|
|
m_tier1CallCountingCandidateMethodRecentlyRecorded = false;
|
|
return false;
|
|
}
|
|
|
|
// Exchange information into locals inside the lock
|
|
|
|
methodsPendingCounting = m_methodsPendingCountingForTier1;
|
|
_ASSERTE(methodsPendingCounting != nullptr);
|
|
m_methodsPendingCountingForTier1 = nullptr;
|
|
|
|
countOfNewMethodsCalledDuringDelay = m_countOfNewMethodsCalledDuringDelay;
|
|
m_countOfNewMethodsCalledDuringDelay = 0;
|
|
|
|
_ASSERTE(!IsTieringDelayActive());
|
|
}
|
|
|
|
if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
|
|
{
|
|
ETW::CompilationLog::TieredCompilation::Runtime::SendResume(countOfNewMethodsCalledDuringDelay);
|
|
}
|
|
|
|
// Install call counters
|
|
{
|
|
MethodDesc** methods = methodsPendingCounting->GetElements();
|
|
COUNT_T methodCount = methodsPendingCounting->GetCount();
|
|
CodeVersionManager *codeVersionManager = GetAppDomain()->GetCodeVersionManager();
|
|
|
|
MethodDescBackpatchInfoTracker::ConditionalLockHolderForGCCoop slotBackpatchLockHolder;
|
|
|
|
// Backpatching entry point slots requires cooperative GC mode, see
|
|
// MethodDescBackpatchInfoTracker::Backpatch_Locked(). The code version manager's table lock is an unsafe lock that
|
|
// may be taken in any GC mode. The lock is taken in cooperative GC mode on some other paths, so the same ordering
|
|
// must be used here to prevent deadlock.
|
|
GCX_COOP();
|
|
CodeVersionManager::LockHolder codeVersioningLockHolder;
|
|
|
|
for (COUNT_T i = 0; i < methodCount; ++i)
|
|
{
|
|
MethodDesc *methodDesc = methods[i];
|
|
_ASSERTE(codeVersionManager == methodDesc->GetCodeVersionManager());
|
|
NativeCodeVersion activeCodeVersion =
|
|
codeVersionManager->GetActiveILCodeVersion(methodDesc).GetActiveNativeCodeVersion(methodDesc);
|
|
if (activeCodeVersion.IsNull())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
EX_TRY
|
|
{
|
|
bool wasSet =
|
|
CallCountingManager::SetCodeEntryPoint(activeCodeVersion, activeCodeVersion.GetNativeCode(), false, nullptr);
|
|
_ASSERTE(wasSet);
|
|
}
|
|
EX_CATCH
|
|
{
|
|
STRESS_LOG1(LF_TIEREDCOMPILATION, LL_WARNING, "TieredCompilationManager::DeactivateTieringDelay: "
|
|
"Exception in CallCountingManager::SetCodeEntryPoint, hr=0x%x\n",
|
|
GET_EXCEPTION()->GetHR());
|
|
}
|
|
EX_END_CATCH(RethrowTerminalExceptions);
|
|
}
|
|
}
|
|
|
|
delete methodsPendingCounting;
|
|
return true;
|
|
}
|
|
|
|
void TieredCompilationManager::AsyncCompleteCallCounting()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
THROWS;
|
|
GC_TRIGGERS;
|
|
MODE_PREEMPTIVE;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
if (m_recentlyRequestedCallCountingCompletion)
|
|
{
|
|
_ASSERTE(m_isPendingCallCountingCompletion);
|
|
}
|
|
else
|
|
{
|
|
m_isPendingCallCountingCompletion = true;
|
|
|
|
// A potentially large number of methods may reach the call count threshold at about the same time or in bursts.
|
|
// This field is used to coalesce a burst of pending completions, see the background work.
|
|
m_recentlyRequestedCallCountingCompletion = true;
|
|
}
|
|
|
|
// The thread is in a GC_NOTRIGGER scope here. If the background worker is already running, we can schedule it inside
|
|
// the same lock without triggering a GC.
|
|
if (TryScheduleBackgroundWorkerWithoutGCTrigger_Locked())
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
CreateBackgroundWorker(); // requires GC_TRIGGERS
|
|
}
|
|
|
|
//This method will process one or more methods from optimization queue
|
|
// on a background thread. Each such method will be jitted with code
|
|
// optimizations enabled and then installed as the active implementation
|
|
// of the method entrypoint.
|
|
bool TieredCompilationManager::DoBackgroundWork(
|
|
UINT64 *workDurationTicksRef,
|
|
UINT64 minWorkDurationTicks,
|
|
UINT64 maxWorkDurationTicks)
|
|
{
|
|
WRAPPER_NO_CONTRACT;
|
|
_ASSERTE(GetThread() == s_backgroundWorkerThread);
|
|
_ASSERTE(m_isPendingCallCountingCompletion || m_countOfMethodsToOptimize != 0);
|
|
_ASSERTE(workDurationTicksRef != nullptr);
|
|
_ASSERTE(minWorkDurationTicks <= maxWorkDurationTicks);
|
|
|
|
UINT64 workDurationTicks = *workDurationTicksRef;
|
|
_ASSERTE(workDurationTicks >= minWorkDurationTicks);
|
|
_ASSERTE(workDurationTicks <= maxWorkDurationTicks);
|
|
|
|
if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
|
|
{
|
|
UINT32 countOfMethodsToOptimize = m_countOfMethodsToOptimize;
|
|
if (m_isPendingCallCountingCompletion)
|
|
{
|
|
countOfMethodsToOptimize += CallCountingManager::GetCountOfCodeVersionsPendingCompletion();
|
|
}
|
|
ETW::CompilationLog::TieredCompilation::Runtime::SendBackgroundJitStart(countOfMethodsToOptimize);
|
|
}
|
|
|
|
bool sendStopEvent = true;
|
|
bool allMethodsJitted = false;
|
|
UINT32 jittedMethodCount = 0;
|
|
LARGE_INTEGER li;
|
|
QueryPerformanceCounter(&li);
|
|
UINT64 startTicks = li.QuadPart;
|
|
UINT64 previousTicks = startTicks;
|
|
|
|
do
|
|
{
|
|
bool completeCallCounting = false;
|
|
NativeCodeVersion nativeCodeVersionToOptimize;
|
|
{
|
|
LockHolder tieredCompilationLockHolder;
|
|
|
|
if (IsTieringDelayActive())
|
|
{
|
|
break;
|
|
}
|
|
|
|
bool wasPendingCallCountingCompletion = m_isPendingCallCountingCompletion;
|
|
if (wasPendingCallCountingCompletion)
|
|
{
|
|
if (m_recentlyRequestedCallCountingCompletion)
|
|
{
|
|
// A potentially large number of methods may reach the call count threshold at about the same time or in
|
|
// bursts. To coalesce a burst of pending completions a bit, if another method has reached the call count
|
|
// threshold since the last time it was checked here, don't complete call counting yet. Coalescing
|
|
// call counting completions a bit helps to avoid blocking foreground threads due to lock contention as
|
|
// methods are continuing to reach the call count threshold.
|
|
m_recentlyRequestedCallCountingCompletion = false;
|
|
}
|
|
else
|
|
{
|
|
m_isPendingCallCountingCompletion = false;
|
|
completeCallCounting = true;
|
|
}
|
|
}
|
|
|
|
if (!completeCallCounting)
|
|
{
|
|
nativeCodeVersionToOptimize = GetNextMethodToOptimize();
|
|
if (nativeCodeVersionToOptimize.IsNull())
|
|
{
|
|
// Ran out of methods to JIT
|
|
if (wasPendingCallCountingCompletion)
|
|
{
|
|
// If call counting completions are pending and delayed above for coalescing, complete call counting
|
|
// now, as that will add more methods to be rejitted
|
|
m_isPendingCallCountingCompletion = false;
|
|
_ASSERTE(!m_recentlyRequestedCallCountingCompletion);
|
|
completeCallCounting = true;
|
|
}
|
|
else
|
|
{
|
|
allMethodsJitted = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_ASSERTE(completeCallCounting == !!nativeCodeVersionToOptimize.IsNull());
|
|
if (completeCallCounting)
|
|
{
|
|
EX_TRY
|
|
{
|
|
CallCountingManager::CompleteCallCounting();
|
|
}
|
|
EX_CATCH
|
|
{
|
|
STRESS_LOG1(LF_TIEREDCOMPILATION, LL_WARNING, "TieredCompilationManager::DoBackgroundWork: "
|
|
"Exception in CallCountingManager::CompleteCallCounting, hr=0x%x\n",
|
|
GET_EXCEPTION()->GetHR());
|
|
}
|
|
EX_END_CATCH(RethrowTerminalExceptions);
|
|
|
|
continue;
|
|
}
|
|
|
|
OptimizeMethod(nativeCodeVersionToOptimize);
|
|
++jittedMethodCount;
|
|
|
|
// Yield the thread periodically to give preference to possibly more important work
|
|
|
|
QueryPerformanceCounter(&li);
|
|
UINT64 currentTicks = li.QuadPart;
|
|
if (currentTicks - startTicks < workDurationTicks)
|
|
{
|
|
previousTicks = currentTicks;
|
|
continue;
|
|
}
|
|
if (currentTicks - previousTicks >= maxWorkDurationTicks)
|
|
{
|
|
// It's unlikely that one iteration above would have taken that long, more likely this thread got scheduled out for
|
|
// a while, in which case there is no need to yield again. Discount the time taken for the previous iteration and
|
|
// continue processing work.
|
|
startTicks += currentTicks - previousTicks;
|
|
previousTicks = currentTicks;
|
|
continue;
|
|
}
|
|
|
|
if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
|
|
{
|
|
UINT32 countOfMethodsToOptimize = m_countOfMethodsToOptimize;
|
|
if (m_isPendingCallCountingCompletion)
|
|
{
|
|
countOfMethodsToOptimize += CallCountingManager::GetCountOfCodeVersionsPendingCompletion();
|
|
}
|
|
ETW::CompilationLog::TieredCompilation::Runtime::SendBackgroundJitStop(countOfMethodsToOptimize, jittedMethodCount);
|
|
}
|
|
|
|
UINT64 beforeSleepTicks = currentTicks;
|
|
ClrSleepEx(0, false);
|
|
|
|
QueryPerformanceCounter(&li);
|
|
currentTicks = li.QuadPart;
|
|
|
|
// Depending on how oversubscribed thread usage is on the system, the sleep may have caused this thread to not be
|
|
// scheduled for a long time. Yielding the thread too frequently may significantly slow down the background work, which
|
|
// may significantly delay how long it takes to reach steady-state performance. On the other hand, yielding the thread
|
|
// too infrequently may cause the background work to monopolize the available CPU resources and prevent more important
|
|
// foreground work from occurring. So the sleep duration is measured and for the next batch of background work, at least
|
|
// a portion of that measured duration is used (within the min and max to keep things sensible). Since the background
|
|
// work duration is capped to a maximum and since a long sleep delay is likely to repeat, to avoid going back to
|
|
// too-frequent yielding too quickly, the background work duration is decayed back to the minimum if the sleep duration
|
|
// becomes consistently short.
|
|
UINT64 newWorkDurationTicks = (currentTicks - beforeSleepTicks) / 4;
|
|
UINT64 decayedWorkDurationTicks = (workDurationTicks + workDurationTicks / 2) / 2;
|
|
workDurationTicks = newWorkDurationTicks < decayedWorkDurationTicks ? decayedWorkDurationTicks : newWorkDurationTicks;
|
|
if (workDurationTicks < minWorkDurationTicks)
|
|
{
|
|
workDurationTicks = minWorkDurationTicks;
|
|
}
|
|
else if (workDurationTicks > maxWorkDurationTicks)
|
|
{
|
|
workDurationTicks = maxWorkDurationTicks;
|
|
}
|
|
|
|
if (IsTieringDelayActive())
|
|
{
|
|
sendStopEvent = false;
|
|
break;
|
|
}
|
|
|
|
if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled())
|
|
{
|
|
UINT32 countOfMethodsToOptimize = m_countOfMethodsToOptimize;
|
|
if (m_isPendingCallCountingCompletion)
|
|
{
|
|
countOfMethodsToOptimize += CallCountingManager::GetCountOfCodeVersionsPendingCompletion();
|
|
}
|
|
ETW::CompilationLog::TieredCompilation::Runtime::SendBackgroundJitStart(countOfMethodsToOptimize);
|
|
}
|
|
|
|
jittedMethodCount = 0;
|
|
startTicks = previousTicks = currentTicks;
|
|
} while (!IsTieringDelayActive());
|
|
|
|
if (ETW::CompilationLog::TieredCompilation::Runtime::IsEnabled() && sendStopEvent)
|
|
{
|
|
UINT32 countOfMethodsToOptimize = m_countOfMethodsToOptimize;
|
|
if (m_isPendingCallCountingCompletion)
|
|
{
|
|
countOfMethodsToOptimize += CallCountingManager::GetCountOfCodeVersionsPendingCompletion();
|
|
}
|
|
ETW::CompilationLog::TieredCompilation::Runtime::SendBackgroundJitStop(countOfMethodsToOptimize, jittedMethodCount);
|
|
}
|
|
|
|
if (allMethodsJitted)
|
|
{
|
|
EX_TRY
|
|
{
|
|
CallCountingManager::StopAndDeleteAllCallCountingStubs();
|
|
}
|
|
EX_CATCH
|
|
{
|
|
STRESS_LOG1(LF_TIEREDCOMPILATION, LL_WARNING, "TieredCompilationManager::DoBackgroundWork: "
|
|
"Exception in CallCountingManager::StopAndDeleteAllCallCountingStubs, hr=0x%x\n",
|
|
GET_EXCEPTION()->GetHR());
|
|
}
|
|
EX_END_CATCH(RethrowTerminalExceptions);
|
|
}
|
|
|
|
*workDurationTicksRef = workDurationTicks;
|
|
return allMethodsJitted;
|
|
}
|
|
|
|
// Jit compiles and installs new optimized code for a method.
|
|
// Called on a background thread.
|
|
void TieredCompilationManager::OptimizeMethod(NativeCodeVersion nativeCodeVersion)
|
|
{
|
|
STANDARD_VM_CONTRACT;
|
|
|
|
_ASSERTE(nativeCodeVersion.GetMethodDesc()->IsEligibleForTieredCompilation());
|
|
if (CompileCodeVersion(nativeCodeVersion))
|
|
{
|
|
ActivateCodeVersion(nativeCodeVersion);
|
|
}
|
|
}
|
|
|
|
// Compiles new optimized code for a method.
|
|
// Called on a background thread.
|
|
BOOL TieredCompilationManager::CompileCodeVersion(NativeCodeVersion nativeCodeVersion)
|
|
{
|
|
STANDARD_VM_CONTRACT;
|
|
|
|
PCODE pCode = NULL;
|
|
MethodDesc* pMethod = nativeCodeVersion.GetMethodDesc();
|
|
EX_TRY
|
|
{
|
|
PrepareCodeConfigBuffer configBuffer(nativeCodeVersion);
|
|
PrepareCodeConfig *config = configBuffer.GetConfig();
|
|
|
|
// This is a recompiling request which means the caller was
|
|
// in COOP mode since the code already ran.
|
|
_ASSERTE(!pMethod->HasUnmanagedCallersOnlyAttribute());
|
|
config->SetCallerGCMode(CallerGCMode::Coop);
|
|
pCode = pMethod->PrepareCode(config);
|
|
LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::CompileCodeVersion Method=0x%pM (%s::%s), code version id=0x%x, code ptr=0x%p\n",
|
|
pMethod, pMethod->m_pszDebugClassName, pMethod->m_pszDebugMethodName,
|
|
nativeCodeVersion.GetVersionId(),
|
|
pCode));
|
|
|
|
if (config->JitSwitchedToMinOpt())
|
|
{
|
|
// The JIT decided to switch to min-opts, likely due to the method being very large or complex. The rejitted code
|
|
// may be slower if the method had been prejitted. Ignore the rejitted code and continue using the tier 0 entry
|
|
// point.
|
|
// TODO: In the future, we should get some feedback from images containing pregenerated code and from tier 0 JIT
|
|
// indicating that the method would not benefit from a rejit and avoid the rejit altogether.
|
|
pCode = NULL;
|
|
}
|
|
}
|
|
EX_CATCH
|
|
{
|
|
// Failing to jit should be rare but acceptable. We will leave whatever code already exists in place.
|
|
STRESS_LOG2(LF_TIEREDCOMPILATION, LL_INFO10, "TieredCompilationManager::CompileCodeVersion: Method %pM failed to jit, hr=0x%x\n",
|
|
pMethod, GET_EXCEPTION()->GetHR());
|
|
}
|
|
EX_END_CATCH(RethrowTerminalExceptions)
|
|
|
|
return pCode != NULL;
|
|
}
|
|
|
|
// Updates the MethodDesc and precode so that future invocations of a method will
|
|
// execute the native code pointed to by pCode.
|
|
// Called on a background thread.
|
|
void TieredCompilationManager::ActivateCodeVersion(NativeCodeVersion nativeCodeVersion)
|
|
{
|
|
STANDARD_VM_CONTRACT;
|
|
|
|
MethodDesc* pMethod = nativeCodeVersion.GetMethodDesc();
|
|
|
|
// If the ilParent version is active this will activate the native code version now.
|
|
// Otherwise if the ilParent version becomes active again in the future the native
|
|
// code version will activate then.
|
|
ILCodeVersion ilParent;
|
|
HRESULT hr = S_OK;
|
|
{
|
|
bool mayHaveEntryPointSlotsToBackpatch = pMethod->MayHaveEntryPointSlotsToBackpatch();
|
|
MethodDescBackpatchInfoTracker::ConditionalLockHolderForGCCoop slotBackpatchLockHolder(
|
|
mayHaveEntryPointSlotsToBackpatch);
|
|
|
|
// Backpatching entry point slots requires cooperative GC mode, see
|
|
// MethodDescBackpatchInfoTracker::Backpatch_Locked(). The code version manager's table lock is an unsafe lock that
|
|
// may be taken in any GC mode. The lock is taken in cooperative GC mode on some other paths, so the same ordering
|
|
// must be used here to prevent deadlock.
|
|
GCX_MAYBE_COOP(mayHaveEntryPointSlotsToBackpatch);
|
|
CodeVersionManager::LockHolder codeVersioningLockHolder;
|
|
|
|
// As long as we are exclusively using any non-JumpStamp publishing for tiered compilation
|
|
// methods this first attempt should succeed
|
|
ilParent = nativeCodeVersion.GetILCodeVersion();
|
|
hr = ilParent.SetActiveNativeCodeVersion(nativeCodeVersion);
|
|
LOG((LF_TIEREDCOMPILATION, LL_INFO10000, "TieredCompilationManager::ActivateCodeVersion Method=0x%pM (%s::%s), code version id=0x%x. SetActiveNativeCodeVersion ret=0x%x\n",
|
|
pMethod, pMethod->m_pszDebugClassName, pMethod->m_pszDebugMethodName,
|
|
nativeCodeVersion.GetVersionId(),
|
|
hr));
|
|
}
|
|
if (FAILED(hr))
|
|
{
|
|
STRESS_LOG2(LF_TIEREDCOMPILATION, LL_INFO10, "TieredCompilationManager::ActivateCodeVersion: "
|
|
"Method %pM failed to publish native code for native code version %d\n",
|
|
pMethod, nativeCodeVersion.GetVersionId());
|
|
}
|
|
}
|
|
|
|
// Dequeues the next method in the optmization queue.
|
|
// This runs on the background thread.
|
|
NativeCodeVersion TieredCompilationManager::GetNextMethodToOptimize()
|
|
{
|
|
CONTRACTL
|
|
{
|
|
NOTHROW;
|
|
GC_NOTRIGGER;
|
|
MODE_ANY;
|
|
}
|
|
CONTRACTL_END;
|
|
|
|
_ASSERTE(IsLockOwnedByCurrentThread());
|
|
|
|
SListElem<NativeCodeVersion>* pElem = m_methodsToOptimize.RemoveHead();
|
|
if (pElem != NULL)
|
|
{
|
|
NativeCodeVersion nativeCodeVersion = pElem->GetValue();
|
|
delete pElem;
|
|
_ASSERTE(m_countOfMethodsToOptimize != 0);
|
|
--m_countOfMethodsToOptimize;
|
|
return nativeCodeVersion;
|
|
}
|
|
return NativeCodeVersion();
|
|
}
|
|
|
|
//static
|
|
CORJIT_FLAGS TieredCompilationManager::GetJitFlags(PrepareCodeConfig *config)
|
|
{
|
|
WRAPPER_NO_CONTRACT;
|
|
_ASSERTE(config != nullptr);
|
|
_ASSERTE(
|
|
!config->WasTieringDisabledBeforeJitting() ||
|
|
config->GetCodeVersion().GetOptimizationTier() != NativeCodeVersion::OptimizationTier0);
|
|
|
|
CORJIT_FLAGS flags;
|
|
|
|
// Determine the optimization tier for the default code version (slightly faster common path during startup compared to
|
|
// below), and disable call counting and set the optimization tier if it's not going to be tier 0 (this is used in other
|
|
// places for the default code version where necessary to avoid the extra expense of GetOptimizationTier()).
|
|
NativeCodeVersion nativeCodeVersion = config->GetCodeVersion();
|
|
if (nativeCodeVersion.IsDefaultVersion() && !config->WasTieringDisabledBeforeJitting())
|
|
{
|
|
MethodDesc *methodDesc = nativeCodeVersion.GetMethodDesc();
|
|
if (!methodDesc->IsEligibleForTieredCompilation())
|
|
{
|
|
_ASSERTE(nativeCodeVersion.GetOptimizationTier() == NativeCodeVersion::OptimizationTierOptimized);
|
|
#ifdef FEATURE_INTERPRETER
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE);
|
|
#endif
|
|
return flags;
|
|
}
|
|
|
|
NativeCodeVersion::OptimizationTier newOptimizationTier;
|
|
if (!methodDesc->RequestedAggressiveOptimization())
|
|
{
|
|
if (g_pConfig->TieredCompilation_QuickJit())
|
|
{
|
|
_ASSERTE(nativeCodeVersion.GetOptimizationTier() == NativeCodeVersion::OptimizationTier0);
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_TIER0);
|
|
return flags;
|
|
}
|
|
|
|
newOptimizationTier = NativeCodeVersion::OptimizationTierOptimized;
|
|
}
|
|
else
|
|
{
|
|
newOptimizationTier = NativeCodeVersion::OptimizationTier1;
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_TIER1);
|
|
}
|
|
|
|
methodDesc->GetLoaderAllocator()->GetCallCountingManager()->DisableCallCounting(nativeCodeVersion);
|
|
nativeCodeVersion.SetOptimizationTier(newOptimizationTier);
|
|
#ifdef FEATURE_INTERPRETER
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE);
|
|
#endif
|
|
return flags;
|
|
}
|
|
|
|
switch (nativeCodeVersion.GetOptimizationTier())
|
|
{
|
|
case NativeCodeVersion::OptimizationTier0:
|
|
if (g_pConfig->TieredCompilation_QuickJit())
|
|
{
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_TIER0);
|
|
break;
|
|
}
|
|
|
|
nativeCodeVersion.SetOptimizationTier(NativeCodeVersion::OptimizationTierOptimized);
|
|
goto Optimized;
|
|
|
|
#ifdef FEATURE_ON_STACK_REPLACEMENT
|
|
case NativeCodeVersion::OptimizationTier1OSR:
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_OSR);
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
case NativeCodeVersion::OptimizationTier1:
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_TIER1);
|
|
FALLTHROUGH;
|
|
|
|
case NativeCodeVersion::OptimizationTierOptimized:
|
|
Optimized:
|
|
#ifdef FEATURE_INTERPRETER
|
|
flags.Set(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE);
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
bool TieredCompilationManager::IsLockOwnedByCurrentThread()
|
|
{
|
|
WRAPPER_NO_CONTRACT;
|
|
return !!s_lock.OwnedByCurrentThread();
|
|
}
|
|
#endif // _DEBUG
|
|
|
|
#endif // FEATURE_TIERED_COMPILATION && !DACCESS_COMPILE
|