mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-06-08 05:27:14 +09:00

Before: - FIXME: very naive implementation - was preventing passing some Temporal tests - https://github.com/tc39/test262 - https://github.com/LadybirdBrowser/libjs-test262 Bonus: Unrelated formatting change (Line 249) that unblocks the CI lint check.
306 lines
10 KiB
C++
306 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2022, Lucas Chollet <lucas.chollet@free.fr>
|
|
* Copyright (c) 2025, Manuel Zahariev <manuel@duck.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "BigFraction.h"
|
|
#include <AK/ByteString.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
|
|
#include <LibCrypto/NumberTheory/ModularFunctions.h>
|
|
|
|
namespace Crypto {
|
|
|
|
BigFraction::BigFraction(SignedBigInteger numerator, UnsignedBigInteger denominator)
|
|
: m_numerator(move(numerator))
|
|
, m_denominator(move(denominator))
|
|
{
|
|
VERIFY(m_denominator != 0);
|
|
reduce();
|
|
}
|
|
|
|
BigFraction::BigFraction(SignedBigInteger value)
|
|
: BigFraction(move(value), 1)
|
|
{
|
|
}
|
|
|
|
ErrorOr<BigFraction> BigFraction::from_string(StringView sv)
|
|
{
|
|
auto maybe_dot_index = sv.find('.');
|
|
|
|
auto integer_part_view = sv.substring_view(0, maybe_dot_index.value_or(sv.length()));
|
|
auto fraction_part_view = maybe_dot_index.has_value() ? sv.substring_view(1 + *maybe_dot_index) : "0"sv;
|
|
|
|
auto integer_part = TRY(SignedBigInteger::from_base(10, integer_part_view));
|
|
auto fractional_part = TRY(SignedBigInteger::from_base(10, fraction_part_view));
|
|
auto fraction_length = UnsignedBigInteger(static_cast<u64>(fraction_part_view.length()));
|
|
|
|
if (!sv.is_empty() && sv[0] == '-')
|
|
fractional_part.negate();
|
|
|
|
return BigFraction(move(integer_part)) + BigFraction(move(fractional_part), NumberTheory::Power("10"_bigint, move(fraction_length)));
|
|
}
|
|
|
|
BigFraction BigFraction::operator+(BigFraction const& rhs) const
|
|
{
|
|
if (rhs.m_numerator == "0"_bigint)
|
|
return *this;
|
|
|
|
auto result = *this;
|
|
result.m_numerator.set_to(m_numerator.multiplied_by(rhs.m_denominator).plus(rhs.m_numerator.multiplied_by(m_denominator)));
|
|
result.m_denominator.set_to(m_denominator.multiplied_by(rhs.m_denominator));
|
|
|
|
result.reduce();
|
|
|
|
return result;
|
|
}
|
|
|
|
BigFraction BigFraction::operator-(BigFraction const& rhs) const
|
|
{
|
|
return *this + (-rhs);
|
|
}
|
|
|
|
BigFraction BigFraction::operator*(BigFraction const& rhs) const
|
|
{
|
|
auto result = *this;
|
|
result.m_numerator.set_to(result.m_numerator.multiplied_by(rhs.m_numerator));
|
|
result.m_denominator.set_to(result.m_denominator.multiplied_by(rhs.m_denominator));
|
|
|
|
result.reduce();
|
|
|
|
return result;
|
|
}
|
|
|
|
BigFraction BigFraction::operator-() const
|
|
{
|
|
return { m_numerator.negated_value(), m_denominator };
|
|
}
|
|
|
|
BigFraction BigFraction::invert() const
|
|
{
|
|
return BigFraction { 1 } / *this;
|
|
}
|
|
|
|
BigFraction BigFraction::operator/(BigFraction const& rhs) const
|
|
{
|
|
VERIFY(rhs.m_numerator != "0"_bigint);
|
|
|
|
auto result = *this;
|
|
result.m_numerator.set_to(m_numerator.multiplied_by(rhs.m_denominator));
|
|
result.m_denominator.set_to(m_denominator.multiplied_by(rhs.m_numerator.unsigned_value()));
|
|
|
|
if (rhs.m_numerator.is_negative())
|
|
result.m_numerator.negate();
|
|
|
|
result.reduce();
|
|
|
|
return result;
|
|
}
|
|
|
|
bool BigFraction::operator<(BigFraction const& rhs) const
|
|
{
|
|
return (*this - rhs).m_numerator.is_negative();
|
|
}
|
|
|
|
bool BigFraction::operator==(BigFraction const& rhs) const
|
|
{
|
|
return m_numerator == rhs.m_numerator && m_denominator == rhs.m_denominator;
|
|
}
|
|
|
|
BigFraction::BigFraction(double d)
|
|
{
|
|
bool negative = false;
|
|
if (d < 0) {
|
|
negative = true;
|
|
d = -d;
|
|
}
|
|
i8 current_pow = 0;
|
|
while (AK::pow(10.0, (double)current_pow) <= d)
|
|
current_pow += 1;
|
|
current_pow -= 1;
|
|
unsigned decimal_places = 0;
|
|
while (d >= NumericLimits<double>::epsilon() || current_pow >= 0) {
|
|
m_numerator.set_to(m_numerator.multiplied_by(SignedBigInteger { 10 }));
|
|
i8 digit = (u64)(d * AK::pow(0.1, (double)current_pow)) % 10;
|
|
m_numerator.set_to(m_numerator.plus(UnsignedBigInteger { digit }));
|
|
d -= digit * AK::pow(10.0, (double)current_pow);
|
|
if (current_pow < 0) {
|
|
++decimal_places;
|
|
m_denominator.set_to(NumberTheory::Power("10"_bigint, UnsignedBigInteger { decimal_places }));
|
|
}
|
|
current_pow -= 1;
|
|
}
|
|
m_numerator.set_to(negative ? (m_numerator.negated_value()) : m_numerator);
|
|
}
|
|
|
|
/*
|
|
* Complexity O(N^2), where N = number of words in the larger of denominator, numerator.
|
|
* - shifts: O(N); two copies
|
|
* - division: O(N^2): Knuth's D algorithm (UnsignedBigInteger::divided_by)
|
|
* - conversion to double: constant (64-bit quotient)
|
|
*/
|
|
double BigFraction::to_double() const
|
|
{
|
|
bool const sign = m_numerator.is_negative();
|
|
if (m_numerator.is_zero())
|
|
return sign ? -0.0 : +0.0;
|
|
|
|
UnsignedBigInteger numerator = m_numerator.unsigned_value(); // copy
|
|
UnsignedBigInteger const& denominator = m_denominator;
|
|
|
|
size_t top_bit_numerator = numerator.one_based_index_of_highest_set_bit();
|
|
size_t top_bit_denominator = denominator.one_based_index_of_highest_set_bit();
|
|
size_t shift_left_numerator = 0;
|
|
|
|
// 1. Shift numerator so that its most significant bit is exaclty 64 bits left tha than that of the denominator.
|
|
// NOTE: the precision of the result will be 63 bits (more than 53 bits necessary for the mantissa of a double).
|
|
if (top_bit_numerator < (top_bit_denominator + 64)) {
|
|
shift_left_numerator = top_bit_denominator + 64 - top_bit_numerator;
|
|
numerator = numerator.shift_left(shift_left_numerator); // copy
|
|
}
|
|
// NOTE: Do nothing if numerator already has more than 64 bits more than denominator.
|
|
|
|
// 2. Divide [potentially shifted] numerator by the denominator.
|
|
auto division_result = numerator.divided_by(denominator);
|
|
if (!division_result.remainder.is_zero()) {
|
|
division_result.quotient = division_result.quotient.shift_left(1).plus(1); // Extend the quotient with a "fake 1".
|
|
// NOTE: Since the quotient has at least 63 bits, this will only affect the mantissa
|
|
// on rounding, and have the same effect on rounding as any fractional digits (from the remainder).
|
|
shift_left_numerator++;
|
|
}
|
|
|
|
using Extractor = FloatExtractor<double>;
|
|
Extractor double_extractor;
|
|
|
|
// 3. Convert the quotient to_double using UnsignedBigInteger::to_double.
|
|
double_extractor.d = division_result.quotient.to_double();
|
|
double_extractor.sign = sign;
|
|
|
|
// 4. Shift the result back by the same number of bits as the numerator.
|
|
double_extractor.exponent -= shift_left_numerator;
|
|
|
|
return double_extractor.d;
|
|
}
|
|
|
|
bool BigFraction::is_zero() const
|
|
{
|
|
return m_numerator.is_zero();
|
|
}
|
|
|
|
void BigFraction::set_to_0()
|
|
{
|
|
m_numerator.set_to_0();
|
|
m_denominator.set_to(1);
|
|
}
|
|
|
|
BigFraction BigFraction::rounded(unsigned rounding_threshold) const
|
|
{
|
|
auto const get_last_digit = [](auto const& integer) {
|
|
return integer.divided_by("10"_bigint).remainder;
|
|
};
|
|
|
|
auto res = m_numerator.divided_by(m_denominator);
|
|
BigFraction result { move(res.quotient) };
|
|
|
|
auto const needed_power = NumberTheory::Power("10"_bigint, UnsignedBigInteger { rounding_threshold });
|
|
// We get one more digit to do proper rounding
|
|
auto const fractional_value = res.remainder.multiplied_by(needed_power.multiplied_by("10"_bigint)).divided_by(m_denominator).quotient;
|
|
|
|
result.m_numerator.set_to(result.m_numerator.multiplied_by(needed_power));
|
|
result.m_numerator.set_to(result.m_numerator.plus(fractional_value.divided_by("10"_bigint).quotient));
|
|
if (get_last_digit(fractional_value) > "4"_bigint)
|
|
result.m_numerator.set_to(result.m_numerator.plus("1"_bigint));
|
|
|
|
result.m_denominator.set_to(result.m_denominator.multiplied_by(needed_power));
|
|
|
|
return result;
|
|
}
|
|
|
|
void BigFraction::reduce()
|
|
{
|
|
auto const gcd = NumberTheory::GCD(m_numerator.unsigned_value(), m_denominator);
|
|
|
|
if (gcd == 1)
|
|
return;
|
|
|
|
auto const numerator_divide = m_numerator.divided_by(gcd);
|
|
VERIFY(numerator_divide.remainder == "0"_bigint);
|
|
m_numerator = numerator_divide.quotient;
|
|
|
|
auto const denominator_divide = m_denominator.divided_by(gcd);
|
|
VERIFY(denominator_divide.remainder == "0"_bigint);
|
|
m_denominator = denominator_divide.quotient;
|
|
}
|
|
|
|
String BigFraction::to_string(unsigned rounding_threshold) const
|
|
{
|
|
StringBuilder builder;
|
|
if (m_numerator.is_negative() && m_numerator != "0"_bigint)
|
|
builder.append('-');
|
|
|
|
auto const number_of_digits = [](auto integer) {
|
|
unsigned size = 1;
|
|
UnsignedBigInteger const ten { 10 };
|
|
|
|
auto division_result = integer.divided_by(ten);
|
|
|
|
while (division_result.remainder.is_zero() && !division_result.quotient.is_zero()) {
|
|
division_result = division_result.quotient.divided_by(ten);
|
|
++size;
|
|
}
|
|
|
|
return size;
|
|
};
|
|
|
|
auto const rounded_fraction = rounded(rounding_threshold);
|
|
|
|
// We take the unsigned value as we already manage the '-'
|
|
auto const full_value = rounded_fraction.m_numerator.unsigned_value().to_base_deprecated(10);
|
|
int split = full_value.length() - (number_of_digits(rounded_fraction.m_denominator) - 1);
|
|
|
|
if (split < 0)
|
|
split = 0;
|
|
|
|
auto const remove_trailing_zeros = [](StringView value) -> StringView {
|
|
auto n = value.length();
|
|
VERIFY(n > 0);
|
|
while (n > 0 && value.characters_without_null_termination()[n - 1] == '0')
|
|
--n;
|
|
return { value.characters_without_null_termination(), n };
|
|
};
|
|
|
|
auto const raw_fractional_value = full_value.substring(split, full_value.length() - split);
|
|
|
|
auto const integer_value = split == 0 ? "0"sv : full_value.substring_view(0, split);
|
|
auto const fractional_value = rounding_threshold == 0 ? "0"sv : remove_trailing_zeros(raw_fractional_value);
|
|
|
|
builder.append(integer_value);
|
|
|
|
bool const has_decimal_part = fractional_value.length() > 0 && fractional_value != "0";
|
|
|
|
if (has_decimal_part) {
|
|
builder.append('.');
|
|
|
|
auto number_pre_zeros = number_of_digits(rounded_fraction.m_denominator) - full_value.length() - 1;
|
|
if (number_pre_zeros > rounding_threshold || fractional_value == "0")
|
|
number_pre_zeros = 0;
|
|
|
|
builder.append_repeated('0', number_pre_zeros);
|
|
|
|
if (fractional_value != "0")
|
|
builder.append(fractional_value);
|
|
}
|
|
|
|
return MUST(builder.to_string());
|
|
}
|
|
|
|
BigFraction BigFraction::sqrt() const
|
|
{
|
|
// FIXME: very naive implementation
|
|
return BigFraction { AK::sqrt(to_double()) };
|
|
}
|
|
|
|
}
|