1
0
Fork 0
mirror of https://github.com/LadybirdBrowser/ladybird.git synced 2025-06-08 05:27:14 +09:00
ladybird/Libraries/LibWeb/Crypto/KeyAlgorithms.cpp
devgianlu 4b3715ccba LibCrypto: Replace {Unsigned,Signed}BigInteger impl with LibTomMath
Replace the implementation of maths in `UnsignedBigInteger`
and `SignedBigInteger` with LibTomMath. This gives benefits in terms of
less code to maintain, correctness and speed.

These changes also remove now-unsued methods and improve the error
propagation for functions allocating lots of memory. Additionally, the
new implementation is always trimmed and won't have dangling zeros when
exporting it.
2025-05-23 11:57:21 +02:00

251 lines
7.8 KiB
C++

/*
* Copyright (c) 2023, stelar7 <dudedbz@gmail.com>
* Copyright (c) 2024, Andrew Kaster <akaster@serenityos.org>
* Copyright (c) 2024, Jelle Raaijmakers <jelle@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/TypedArray.h>
#include <LibWeb/Bindings/ExceptionOrUtils.h>
#include <LibWeb/Crypto/KeyAlgorithms.h>
namespace Web::Crypto {
GC_DEFINE_ALLOCATOR(KeyAlgorithm);
GC_DEFINE_ALLOCATOR(RsaKeyAlgorithm);
GC_DEFINE_ALLOCATOR(RsaHashedKeyAlgorithm);
GC_DEFINE_ALLOCATOR(EcKeyAlgorithm);
GC_DEFINE_ALLOCATOR(AesKeyAlgorithm);
GC_DEFINE_ALLOCATOR(HmacKeyAlgorithm);
template<typename T>
static JS::ThrowCompletionOr<T*> impl_from(JS::VM& vm, StringView Name)
{
auto this_value = vm.this_value();
JS::Object* this_object = nullptr;
if (this_value.is_nullish())
this_object = &vm.current_realm()->global_object();
else
this_object = TRY(this_value.to_object(vm));
if (!is<T>(this_object))
return vm.throw_completion<JS::TypeError>(JS::ErrorType::NotAnObjectOfType, Name);
return static_cast<T*>(this_object);
}
GC::Ref<KeyAlgorithm> KeyAlgorithm::create(JS::Realm& realm)
{
return realm.create<KeyAlgorithm>(realm);
}
KeyAlgorithm::KeyAlgorithm(JS::Realm& realm)
: Object(ConstructWithPrototypeTag::Tag, realm.intrinsics().object_prototype())
, m_realm(realm)
{
}
void KeyAlgorithm::initialize(JS::Realm& realm)
{
define_native_accessor(realm, "name"_fly_string, name_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
Base::initialize(realm);
}
JS_DEFINE_NATIVE_FUNCTION(KeyAlgorithm::name_getter)
{
auto* impl = TRY(impl_from<KeyAlgorithm>(vm, "KeyAlgorithm"sv));
auto name = TRY(Bindings::throw_dom_exception_if_needed(vm, [&] { return impl->name(); }));
return JS::PrimitiveString::create(vm, name);
}
void KeyAlgorithm::visit_edges(Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_realm);
}
GC::Ref<RsaKeyAlgorithm> RsaKeyAlgorithm::create(JS::Realm& realm)
{
return realm.create<RsaKeyAlgorithm>(realm);
}
RsaKeyAlgorithm::RsaKeyAlgorithm(JS::Realm& realm)
: KeyAlgorithm(realm)
, m_public_exponent(MUST(JS::Uint8Array::create(realm, 0)))
{
}
void RsaKeyAlgorithm::initialize(JS::Realm& realm)
{
Base::initialize(realm);
define_native_accessor(realm, "modulusLength"_fly_string, modulus_length_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
define_native_accessor(realm, "publicExponent"_fly_string, public_exponent_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
}
void RsaKeyAlgorithm::visit_edges(Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_public_exponent);
}
WebIDL::ExceptionOr<void> RsaKeyAlgorithm::set_public_exponent(::Crypto::UnsignedBigInteger exponent)
{
auto& realm = this->realm();
auto& vm = this->vm();
auto bytes = TRY_OR_THROW_OOM(vm, ByteBuffer::create_uninitialized(exponent.byte_length()));
auto data_size = exponent.export_data(bytes.span());
auto data_slice_be = bytes.bytes().slice(bytes.size() - data_size, data_size);
// The BigInteger typedef from the WebCrypto spec requires the bytes in the Uint8Array be ordered in Big Endian
if constexpr (AK::HostIsLittleEndian) {
Vector<u8, 32> data_slice_le;
data_slice_le.ensure_capacity(data_size);
for (size_t i = 0; i < data_size; ++i) {
data_slice_le.append(data_slice_be[data_size - i - 1]);
}
m_public_exponent = TRY(JS::Uint8Array::create(realm, data_slice_le.size()));
m_public_exponent->viewed_array_buffer()->buffer().overwrite(0, data_slice_le.data(), data_slice_le.size());
} else {
m_public_exponent = TRY(JS::Uint8Array::create(realm, data_slice_be.size()));
m_public_exponent->viewed_array_buffer()->buffer().overwrite(0, data_slice_be.data(), data_slice_be.size());
}
return {};
}
JS_DEFINE_NATIVE_FUNCTION(RsaKeyAlgorithm::modulus_length_getter)
{
auto* impl = TRY(impl_from<RsaKeyAlgorithm>(vm, "RsaKeyAlgorithm"sv));
return JS::Value(impl->modulus_length());
}
JS_DEFINE_NATIVE_FUNCTION(RsaKeyAlgorithm::public_exponent_getter)
{
auto* impl = TRY(impl_from<RsaKeyAlgorithm>(vm, "RsaKeyAlgorithm"sv));
return impl->public_exponent();
}
GC::Ref<EcKeyAlgorithm> EcKeyAlgorithm::create(JS::Realm& realm)
{
return realm.create<EcKeyAlgorithm>(realm);
}
EcKeyAlgorithm::EcKeyAlgorithm(JS::Realm& realm)
: KeyAlgorithm(realm)
{
}
void EcKeyAlgorithm::initialize(JS::Realm& realm)
{
Base::initialize(realm);
define_native_accessor(realm, "namedCurve"_fly_string, named_curve_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
}
JS_DEFINE_NATIVE_FUNCTION(EcKeyAlgorithm::named_curve_getter)
{
auto* impl = TRY(impl_from<EcKeyAlgorithm>(vm, "EcKeyAlgorithm"sv));
return JS::PrimitiveString::create(vm, impl->named_curve());
}
GC::Ref<RsaHashedKeyAlgorithm> RsaHashedKeyAlgorithm::create(JS::Realm& realm)
{
return realm.create<RsaHashedKeyAlgorithm>(realm);
}
RsaHashedKeyAlgorithm::RsaHashedKeyAlgorithm(JS::Realm& realm)
: RsaKeyAlgorithm(realm)
, m_hash(String {})
{
}
void RsaHashedKeyAlgorithm::initialize(JS::Realm& realm)
{
Base::initialize(realm);
define_native_accessor(realm, "hash"_fly_string, hash_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
}
JS_DEFINE_NATIVE_FUNCTION(RsaHashedKeyAlgorithm::hash_getter)
{
auto* impl = TRY(impl_from<RsaHashedKeyAlgorithm>(vm, "RsaHashedKeyAlgorithm"sv));
auto hash = TRY(Bindings::throw_dom_exception_if_needed(vm, [&] { return impl->hash(); }));
return hash.visit(
[&](String const& hash_string) -> JS::Value {
auto& realm = *vm.current_realm();
auto object = KeyAlgorithm::create(realm);
object->set_name(hash_string);
return object;
},
[&](GC::Root<JS::Object> const& hash) -> JS::Value {
return hash;
});
}
GC::Ref<AesKeyAlgorithm> AesKeyAlgorithm::create(JS::Realm& realm)
{
return realm.create<AesKeyAlgorithm>(realm);
}
AesKeyAlgorithm::AesKeyAlgorithm(JS::Realm& realm)
: KeyAlgorithm(realm)
, m_length(0)
{
}
void AesKeyAlgorithm::initialize(JS::Realm& realm)
{
Base::initialize(realm);
define_native_accessor(realm, "length"_fly_string, length_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
}
JS_DEFINE_NATIVE_FUNCTION(AesKeyAlgorithm::length_getter)
{
auto* impl = TRY(impl_from<AesKeyAlgorithm>(vm, "AesKeyAlgorithm"sv));
auto length = TRY(Bindings::throw_dom_exception_if_needed(vm, [&] { return impl->length(); }));
return length;
}
GC::Ref<HmacKeyAlgorithm> HmacKeyAlgorithm::create(JS::Realm& realm)
{
return realm.create<HmacKeyAlgorithm>(realm);
}
HmacKeyAlgorithm::HmacKeyAlgorithm(JS::Realm& realm)
: KeyAlgorithm(realm)
{
}
void HmacKeyAlgorithm::initialize(JS::Realm& realm)
{
Base::initialize(realm);
define_native_accessor(realm, "hash"_fly_string, hash_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
define_native_accessor(realm, "length"_fly_string, length_getter, {}, JS::Attribute::Enumerable | JS::Attribute::Configurable);
}
void HmacKeyAlgorithm::visit_edges(JS::Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_hash);
}
JS_DEFINE_NATIVE_FUNCTION(HmacKeyAlgorithm::hash_getter)
{
auto* impl = TRY(impl_from<HmacKeyAlgorithm>(vm, "HmacKeyAlgorithm"sv));
return TRY(Bindings::throw_dom_exception_if_needed(vm, [&] { return impl->hash(); }));
}
JS_DEFINE_NATIVE_FUNCTION(HmacKeyAlgorithm::length_getter)
{
auto* impl = TRY(impl_from<HmacKeyAlgorithm>(vm, "HmacKeyAlgorithm"sv));
return TRY(Bindings::throw_dom_exception_if_needed(vm, [&] { return impl->length(); }));
}
}