1
0
Fork 0
mirror of https://github.com/LadybirdBrowser/ladybird.git synced 2025-06-11 02:13:56 +09:00
ladybird/Libraries/LibJS/AST.cpp
Andreas Kling 343e224aa8 LibJS: Implement basic exception throwing
You can now throw exceptions by calling Interpreter::throw_exception().
Anyone who calls ASTNode::execute() needs to check afterwards if the
Interpreter now has an exception(), and if so, stop what they're doing
and simply return.

When catching an exception, we'll first execute the CatchClause node
if present. After that, we'll execute the finalizer block if present.

This is unlikely to be completely correct, but it's a start! :^)
2020-03-24 16:14:10 +01:00

789 lines
21 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/StringBuilder.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Value.h>
#include <stdio.h>
namespace JS {
Value ScopeNode::execute(Interpreter& interpreter) const
{
return interpreter.run(*this);
}
Value FunctionDeclaration::execute(Interpreter& interpreter) const
{
auto* function = interpreter.heap().allocate<ScriptFunction>(body(), parameters());
interpreter.set_variable(name(), function);
return function;
}
Value FunctionExpression::execute(Interpreter& interpreter) const
{
return interpreter.heap().allocate<ScriptFunction>(body(), parameters());
}
Value ExpressionStatement::execute(Interpreter& interpreter) const
{
return m_expression->execute(interpreter);
}
Value CallExpression::execute(Interpreter& interpreter) const
{
auto callee = m_callee->execute(interpreter);
if (interpreter.exception())
return {};
ASSERT(callee.is_object());
ASSERT(callee.as_object()->is_function());
auto* function = static_cast<Function*>(callee.as_object());
auto& call_frame = interpreter.push_call_frame();
for (size_t i = 0; i < m_arguments.size(); ++i) {
call_frame.arguments.append(m_arguments[i].execute(interpreter));
if (interpreter.exception())
return {};
}
if (m_callee->is_member_expression()) {
auto object_value = static_cast<const MemberExpression&>(*m_callee).object().execute(interpreter);
if (interpreter.exception())
return {};
auto this_value = object_value.to_object(interpreter.heap());
if (interpreter.exception())
return {};
call_frame.this_value = this_value;
}
auto result = function->call(interpreter, call_frame.arguments);
interpreter.pop_call_frame();
return result;
}
Value ReturnStatement::execute(Interpreter& interpreter) const
{
auto value = argument() ? argument()->execute(interpreter) : js_undefined();
interpreter.unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter) const
{
auto predicate_result = m_predicate->execute(interpreter);
if (predicate_result.to_boolean())
return interpreter.run(*m_consequent);
if (m_alternate)
return interpreter.run(*m_alternate);
return js_undefined();
}
Value WhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
while (m_predicate->execute(interpreter).to_boolean()) {
last_value = interpreter.run(*m_body);
}
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter) const
{
RefPtr<BlockStatement> wrapper;
if (m_init->is_variable_declaration() && static_cast<const VariableDeclaration*>(m_init.ptr())->declaration_type() != DeclarationType::Var) {
wrapper = create_ast_node<BlockStatement>();
interpreter.enter_scope(*wrapper, {}, ScopeType::Block);
}
Value last_value = js_undefined();
if (m_init)
m_init->execute(interpreter);
if (m_test) {
while (m_test->execute(interpreter).to_boolean()) {
last_value = interpreter.run(*m_body);
if (m_update)
m_update->execute(interpreter);
}
} else {
while (true) {
last_value = interpreter.run(*m_body);
if (m_update)
m_update->execute(interpreter);
}
}
if (wrapper)
interpreter.exit_scope(*wrapper);
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
auto rhs_result = m_rhs->execute(interpreter);
switch (m_op) {
case BinaryOp::Plus:
return add(lhs_result, rhs_result);
case BinaryOp::Minus:
return sub(lhs_result, rhs_result);
case BinaryOp::Asterisk:
return mul(lhs_result, rhs_result);
case BinaryOp::Slash:
return div(lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return typed_eq(lhs_result, rhs_result);
case BinaryOp::TypedInequals:
return Value(!typed_eq(lhs_result, rhs_result).as_bool());
case BinaryOp::AbstractEquals:
return eq(lhs_result, rhs_result);
case BinaryOp::AbstractInequals:
return Value(!eq(lhs_result, rhs_result).as_bool());
case BinaryOp::GreaterThan:
return greater_than(lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter).to_boolean();
auto rhs_result = m_rhs->execute(interpreter).to_boolean();
switch (m_op) {
case LogicalOp::And:
return Value(lhs_result && rhs_result);
case LogicalOp::Or:
return Value(lhs_result || rhs_result);
}
ASSERT_NOT_REACHED();
}
Value UnaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
switch (m_op) {
case UnaryOp::BitwiseNot:
return bitwise_not(lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
case UnaryOp::Typeof:
switch (lhs_result.type()) {
case Value::Type::Undefined:
return js_string(interpreter.heap(), "undefined");
case Value::Type::Null:
// yes, this is on purpose. yes, this is how javascript works.
// yes, it's silly.
return js_string(interpreter.heap(), "object");
case Value::Type::Number:
return js_string(interpreter.heap(), "number");
case Value::Type::String:
return js_string(interpreter.heap(), "string");
case Value::Type::Object:
return js_string(interpreter.heap(), "object");
case Value::Type::Boolean:
return js_string(interpreter.heap(), "boolean");
}
}
ASSERT_NOT_REACHED();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& child : children())
child.dump(indent + 1);
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Plus:
op_string = "+";
break;
case BinaryOp::Minus:
op_string = "-";
break;
case BinaryOp::Asterisk:
op_string = "*";
break;
case BinaryOp::Slash:
op_string = "/";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::AbstractEquals:
op_string = "==";
break;
case BinaryOp::AbstractInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumericLiteral %g\n", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void UndefinedLiteral::dump(int indent) const
{
print_indent(indent);
printf("undefined\n");
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
printf("null\n");
}
void FunctionNode::dump(int indent, const char* class_name) const
{
StringBuilder parameters_builder;
parameters_builder.join(',', parameters());
print_indent(indent);
printf("%s '%s(%s)'\n", class_name, name().characters(), parameters_builder.build().characters());
body().dump(indent + 1);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
printf("Else\n");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
predicate().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter) const
{
auto value = interpreter.get_variable(string());
if (value.is_undefined())
return interpreter.throw_exception(interpreter.heap().allocate<Error>("ReferenceError", String::format("'%s' not known", string().characters())));
return value;
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
Value AssignmentExpression::execute(Interpreter& interpreter) const
{
AK::Function<void(Value)> commit;
if (m_lhs->is_identifier()) {
commit = [&](Value value) {
auto name = static_cast<const Identifier&>(*m_lhs).string();
interpreter.set_variable(name, value);
};
} else if (m_lhs->is_member_expression()) {
commit = [&](Value value) {
auto object = static_cast<const MemberExpression&>(*m_lhs).object().execute(interpreter).to_object(interpreter.heap());
ASSERT(object.is_object());
auto property_name = static_cast<const MemberExpression&>(*m_lhs).computed_property_name(interpreter);
object.as_object()->put(property_name, value);
};
} else {
ASSERT_NOT_REACHED();
}
auto rhs_result = m_rhs->execute(interpreter);
switch (m_op) {
case AssignmentOp::Assignment:
break;
case AssignmentOp::AdditionAssignment:
rhs_result = add(m_lhs->execute(interpreter), rhs_result);
break;
case AssignmentOp::SubtractionAssignment:
rhs_result = sub(m_lhs->execute(interpreter), rhs_result);
break;
case AssignmentOp::MultiplicationAssignment:
rhs_result = mul(m_lhs->execute(interpreter), rhs_result);
break;
case AssignmentOp::DivisionAssignment:
rhs_result = div(m_lhs->execute(interpreter), rhs_result);
break;
}
commit(rhs_result);
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter) const
{
ASSERT(m_argument->is_identifier());
auto name = static_cast<const Identifier&>(*m_argument).string();
auto previous_value = interpreter.get_variable(name);
ASSERT(previous_value.is_number());
int op_result = 0;
switch (m_op) {
case UpdateOp::Increment:
op_result = 1;
break;
case UpdateOp::Decrement:
op_result = -1;
break;
}
interpreter.set_variable(name, Value(previous_value.as_double() + op_result));
if (m_prefixed)
return JS::Value(previous_value.as_double() + op_result);
return previous_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_prefixed)
printf("%s\n", op_string);
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
printf("%s\n", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter) const
{
interpreter.declare_variable(name().string(), m_declaration_type);
if (m_initializer) {
auto initalizer_result = m_initializer->execute(interpreter);
interpreter.set_variable(name().string(), initalizer_result, true);
}
return js_undefined();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_type_string = nullptr;
switch (m_declaration_type) {
case DeclarationType::Let:
declaration_type_string = "Let";
break;
case DeclarationType::Var:
declaration_type_string = "Var";
break;
case DeclarationType::Const:
declaration_type_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_type_string);
m_name->dump(indent + 1);
if (m_initializer)
m_initializer->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto it : m_properties) {
print_indent(indent + 1);
printf("%s: ", it.key.characters());
it.value->dump(0);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectExpression::execute(Interpreter& interpreter) const
{
auto object = interpreter.heap().allocate<Object>();
for (auto it : m_properties)
object->put(it.key, it.value->execute(interpreter));
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false");
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
FlyString MemberExpression::computed_property_name(Interpreter& interpreter) const
{
if (!is_computed()) {
ASSERT(m_property->is_identifier());
return static_cast<const Identifier&>(*m_property).string();
}
return m_property->execute(interpreter).to_string();
}
Value MemberExpression::execute(Interpreter& interpreter) const
{
auto object_result = m_object->execute(interpreter).to_object(interpreter.heap());
ASSERT(object_result.is_object());
return object_result.as_object()->get(computed_property_name(interpreter));
}
Value StringLiteral::execute(Interpreter& interpreter) const
{
return js_string(interpreter.heap(), m_value);
}
Value NumericLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value BooleanLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value UndefinedLiteral::execute(Interpreter&) const
{
return js_undefined();
}
Value NullLiteral::execute(Interpreter&) const
{
return js_null();
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
element.dump(indent + 1);
}
}
Value ArrayExpression::execute(Interpreter& interpreter) const
{
auto* array = interpreter.heap().allocate<Array>();
for (auto& element : m_elements) {
array->push(element.execute(interpreter));
}
return array;
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Block)\n");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
printf("(Handler)\n");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
printf("(Finalizer)\n");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
printf("CatchClause");
if (!m_parameter.is_null())
printf(" (%s)", m_parameter.characters());
printf("\n");
body().dump(indent + 1);
}
Value TryStatement::execute(Interpreter& interpreter) const
{
interpreter.run(block(), {}, ScopeType::Try);
if (auto* exception = interpreter.exception()) {
if (m_handler) {
interpreter.clear_exception();
Vector<Argument> arguments { { m_handler->parameter(), Value(exception) } };
interpreter.run(m_handler->body(), move(arguments));
}
}
if (m_finalizer)
m_finalizer->execute(interpreter);
return {};
}
Value CatchClause::execute(Interpreter&) const
{
// NOTE: CatchClause execution is handled by TryStatement.
ASSERT_NOT_REACHED();
return {};
}
}