1
0
Fork 0
mirror of https://github.com/LadybirdBrowser/ladybird.git synced 2025-06-11 02:13:56 +09:00
ladybird/AK/Function.h
Andrew Kaster 01ac48b36f AK: Support storing blocks in AK::Function
This has two slightly different implementations for ARC and non-ARC
compiler modes. The main idea is to store a block pointer as our
closure and use either ARC magic or BlockRuntime methods to manage
the memory for the block. Things are complicated by the fact that
we don't yet force-enable swift, so we can't count on the swift.org
llvm fork being our compiler toolchain. The patch adds some CMake
checks and ifdefs to still support environments without support
for blocks or ARC.
2025-03-18 17:15:08 -06:00

392 lines
13 KiB
C++

/*
* Copyright (C) 2016 Apple Inc. All rights reserved.
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
* Copyright (c) 2018-2023, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2025, Andrew Kaster <andrew@ladybird.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Atomic.h>
#include <AK/BitCast.h>
#include <AK/Noncopyable.h>
#include <AK/ScopeGuard.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/TypeCasts.h>
#include <AK/Types.h>
// BlockRuntime methods for Objective-C block closure support.
extern "C" void* _Block_copy(void const*);
extern "C" void _Block_release(void const*);
extern "C" size_t Block_size(void const*);
namespace AK {
// These annotations are used to avoid capturing a variable with local storage in a lambda that outlives it
#if defined(AK_COMPILER_CLANG)
# define ESCAPING [[clang::annotate("serenity::escaping")]]
// FIXME: When we get C++23, change this to be applied to the lambda directly instead of to the types of its captures
# define IGNORE_USE_IN_ESCAPING_LAMBDA [[clang::annotate("serenity::ignore_use_in_escaping_lambda")]]
#else
# define ESCAPING
# define IGNORE_USE_IN_ESCAPING_LAMBDA
#endif
namespace Detail {
#ifdef AK_HAS_OBJC_ARC
inline constexpr bool HaveObjcArc = true;
#else
inline constexpr bool HaveObjcArc = false;
#endif
// validated in TestFunction.mm
inline constexpr size_t block_layout_size = 32;
}
template<typename>
class Function;
template<typename F>
inline constexpr bool IsFunctionPointer = (IsPointer<F> && IsFunction<RemovePointer<F>>);
// Not a function pointer, and not an lvalue reference.
template<typename F>
inline constexpr bool IsFunctionObject = (!IsFunctionPointer<F> && IsRvalueReference<F&&>);
template<typename Out, typename... In>
class Function<Out(In...)> {
AK_MAKE_NONCOPYABLE(Function);
public:
using FunctionType = Out(In...);
using ReturnType = Out;
constexpr static auto AccommodateExcessiveAlignmentRequirements = true;
constexpr static size_t ExcessiveAlignmentThreshold = 16;
Function() = default;
Function(nullptr_t)
{
}
~Function()
{
clear(false);
}
[[nodiscard]] ReadonlyBytes raw_capture_range() const
{
if (!m_size)
return {};
if (auto* wrapper = callable_wrapper())
return ReadonlyBytes { wrapper->raw_callable(), m_size };
return {};
}
template<typename CallableType>
Function(CallableType&& callable)
requires((IsFunctionObject<CallableType> && IsCallableWithArguments<CallableType, Out, In...> && !IsSame<RemoveCVReference<CallableType>, Function>))
{
init_with_callable(forward<CallableType>(callable), CallableKind::FunctionObject);
}
template<typename FunctionType>
Function(FunctionType f)
requires((IsFunctionPointer<FunctionType> && IsCallableWithArguments<RemovePointer<FunctionType>, Out, In...> && !IsSame<RemoveCVReference<FunctionType>, Function>))
{
init_with_callable(move(f), CallableKind::FunctionPointer);
}
template<typename BlockType>
Function(BlockType b)
requires((IsBlockClosure<BlockType> && IsCallableWithArguments<BlockType, Out, In...>))
{
init_with_callable(move(b), CallableKind::Block);
}
Function(Function&& other)
{
move_from(move(other));
}
// Note: Despite this method being const, a mutable lambda _may_ modify its own captures.
Out operator()(In... in) const
{
auto* wrapper = callable_wrapper();
VERIFY(wrapper);
++m_call_nesting_level;
ScopeGuard guard([this] {
if (--m_call_nesting_level == 0 && m_deferred_clear)
const_cast<Function*>(this)->clear(false);
});
return wrapper->call(forward<In>(in)...);
}
explicit operator bool() const { return !!callable_wrapper(); }
template<typename CallableType>
Function& operator=(CallableType&& callable)
requires((IsFunctionObject<CallableType> && IsCallableWithArguments<CallableType, Out, In...>))
{
clear();
init_with_callable(forward<CallableType>(callable), CallableKind::FunctionObject);
return *this;
}
template<typename FunctionType>
Function& operator=(FunctionType f)
requires((IsFunctionPointer<FunctionType> && IsCallableWithArguments<RemovePointer<FunctionType>, Out, In...>))
{
clear();
if (f)
init_with_callable(move(f), CallableKind::FunctionPointer);
return *this;
}
template<typename BlockType>
Function& operator=(BlockType&& block)
requires((IsBlockClosure<BlockType> && IsCallableWithArguments<BlockType, Out, In...>))
{
clear();
init_with_callable(static_cast<RemoveCVReference<BlockType>>(block), CallableKind::Block);
return *this;
}
Function& operator=(nullptr_t)
{
clear();
return *this;
}
Function& operator=(Function&& other)
{
if (this != &other) {
clear();
move_from(move(other));
}
return *this;
}
private:
enum class CallableKind {
FunctionPointer,
FunctionObject,
Block,
};
class CallableWrapperBase {
public:
virtual ~CallableWrapperBase() = default;
// Note: This is not const to allow storing mutable lambdas.
virtual Out call(In...) = 0;
virtual void destroy() = 0;
virtual void init_and_swap(u8*, size_t) = 0;
virtual void const* raw_callable() const = 0;
};
template<typename CallableType>
class CallableWrapper final : public CallableWrapperBase {
AK_MAKE_NONMOVABLE(CallableWrapper);
AK_MAKE_NONCOPYABLE(CallableWrapper);
public:
explicit CallableWrapper(CallableType&& callable)
: m_callable(move(callable))
{
}
Out call(In... in) final override
{
return m_callable(forward<In>(in)...);
}
void destroy() final override
{
if constexpr (IsBlockClosure<CallableType>) {
if constexpr (Detail::HaveObjcArc)
m_callable = nullptr;
else
_Block_release(m_callable);
} else {
// This code is a bit too clever for gcc. Pinky promise we're only deleting heap objects.
AK_IGNORE_DIAGNOSTIC("-Wfree-nonheap-object", delete this);
}
}
// NOLINTNEXTLINE(readability-non-const-parameter) False positive; destination is used in a placement new expression
void init_and_swap(u8* destination, size_t size) final override
{
VERIFY(size >= sizeof(CallableWrapper));
new (destination) CallableWrapper { move(m_callable) };
}
void const* raw_callable() const final override
{
if constexpr (IsBlockClosure<CallableType>)
return static_cast<u8 const*>(bridge_cast<void>(m_callable)) + Detail::block_layout_size;
else
return &m_callable;
}
private:
CallableType m_callable;
};
enum class FunctionKind {
NullPointer,
Inline,
Outline,
Block,
};
CallableWrapperBase* callable_wrapper() const
{
switch (m_kind) {
case FunctionKind::NullPointer:
return nullptr;
case FunctionKind::Inline:
case FunctionKind::Block:
return bit_cast<CallableWrapperBase*>(&m_storage);
case FunctionKind::Outline:
return *bit_cast<CallableWrapperBase**>(&m_storage);
default:
VERIFY_NOT_REACHED();
}
}
void clear(bool may_defer = true)
{
bool called_from_inside_function = m_call_nesting_level > 0;
// NOTE: This VERIFY could fail because a Function is destroyed from within itself.
VERIFY(may_defer || !called_from_inside_function);
if (called_from_inside_function && may_defer) {
m_deferred_clear = true;
return;
}
m_deferred_clear = false;
auto* wrapper = callable_wrapper();
switch (m_kind) {
case FunctionKind::Inline:
VERIFY(wrapper);
wrapper->~CallableWrapperBase();
break;
case FunctionKind::Outline:
VERIFY(wrapper);
wrapper->destroy();
break;
case FunctionKind::Block:
VERIFY(wrapper);
wrapper->destroy();
wrapper->~CallableWrapperBase();
break;
case FunctionKind::NullPointer:
break;
}
m_kind = FunctionKind::NullPointer;
}
template<typename Callable>
void init_with_callable(Callable&& callable, CallableKind callable_kind)
{
if constexpr (alignof(Callable) > ExcessiveAlignmentThreshold && !AccommodateExcessiveAlignmentRequirements) {
static_assert(
alignof(Callable) <= ExcessiveAlignmentThreshold,
"This callable object has a very large alignment requirement, "
"check your capture list if it is a lambda expression, "
"and make sure your callable object is not excessively aligned.");
}
VERIFY(m_call_nesting_level == 0);
using WrapperType = CallableWrapper<Callable>;
if (callable_kind == CallableKind::FunctionObject)
m_size = sizeof(Callable);
else
m_size = 0;
if constexpr (IsBlockClosure<Callable>) {
auto block_size = Block_size(bridge_cast<void>(callable));
VERIFY(block_size >= Detail::block_layout_size);
m_size = block_size - Detail::block_layout_size;
}
if constexpr (alignof(Callable) > inline_alignment || sizeof(WrapperType) > inline_capacity) {
*bit_cast<CallableWrapperBase**>(&m_storage) = new WrapperType(forward<Callable>(callable));
m_kind = FunctionKind::Outline;
} else {
static_assert(sizeof(WrapperType) <= inline_capacity);
if constexpr (IsBlockClosure<Callable>) {
if constexpr (Detail::HaveObjcArc) {
new (m_storage) WrapperType(forward<Callable>(callable));
} else {
new (m_storage) WrapperType(reinterpret_cast<Callable>(_Block_copy(callable)));
}
m_kind = FunctionKind::Block;
} else {
new (m_storage) WrapperType(forward<Callable>(callable));
m_kind = FunctionKind::Inline;
}
}
}
void move_from(Function&& other)
{
VERIFY(m_call_nesting_level == 0 && other.m_call_nesting_level == 0);
auto* other_wrapper = other.callable_wrapper();
m_size = other.m_size;
switch (other.m_kind) {
case FunctionKind::NullPointer:
break;
case FunctionKind::Inline:
case FunctionKind::Block:
other_wrapper->init_and_swap(m_storage, inline_capacity);
m_kind = other.m_kind;
break;
case FunctionKind::Outline:
*bit_cast<CallableWrapperBase**>(&m_storage) = other_wrapper;
m_kind = FunctionKind::Outline;
break;
default:
VERIFY_NOT_REACHED();
}
other.m_kind = FunctionKind::NullPointer;
}
size_t m_size { 0 };
FunctionKind m_kind { FunctionKind::NullPointer };
bool m_deferred_clear { false };
mutable Atomic<u16> m_call_nesting_level { 0 };
static constexpr size_t inline_alignment = max(alignof(CallableWrapperBase), alignof(CallableWrapperBase*));
// Empirically determined to fit most lambdas and functions.
static constexpr size_t inline_capacity = 4 * sizeof(void*);
alignas(inline_alignment) u8 m_storage[inline_capacity];
};
}
#if USING_AK_GLOBALLY
using AK::Function;
using AK::IsCallableWithArguments;
#endif