1
0
Fork 0
mirror of https://github.com/LadybirdBrowser/ladybird.git synced 2025-06-07 21:17:07 +09:00
ladybird/AK/Optional.h
Timothy Flynn 7280ed6312 Meta: Enforce newlines around namespaces
This has come up several times during code review, so let's just enforce
it using a new clang-format 20 option.
2025-05-14 02:01:59 -06:00

664 lines
22 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2021, Daniel Bertalan <dani@danielbertalan.dev>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Noncopyable.h>
#include <AK/StdLibExtras.h>
#include <AK/Try.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
namespace AK {
namespace Detail {
template<auto condition, typename T>
struct ConditionallyResultType;
template<typename T>
struct ConditionallyResultType<true, T> {
using Type = typename T::ResultType;
};
template<typename T>
struct ConditionallyResultType<false, T> {
using Type = T;
};
}
template<auto condition, typename T>
using ConditionallyResultType = typename Detail::ConditionallyResultType<condition, T>::Type;
// NOTE: If you're here because of an internal compiler error in GCC 10.3.0+,
// it's because of the following bug:
//
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96745
//
// Make sure you didn't accidentally make your destructor private before
// you start bug hunting. :^)
template<typename>
class Optional;
struct OptionalNone {
explicit constexpr OptionalNone() = default;
};
template<typename T, typename Self = Optional<T>>
requires(!IsLvalueReference<Self>) class [[nodiscard]] OptionalBase {
public:
using ValueType = T;
template<SameAs<OptionalNone> V>
ALWAYS_INLINE constexpr Self& operator=(V)
{
static_cast<Self&>(*this).clear();
return static_cast<Self&>(*this);
}
[[nodiscard]] ALWAYS_INLINE constexpr T* ptr() &
{
return static_cast<Self&>(*this).has_value() ? __builtin_launder(reinterpret_cast<T*>(&static_cast<Self&>(*this).value())) : nullptr;
}
[[nodiscard]] ALWAYS_INLINE constexpr T const* ptr() const&
{
return static_cast<Self const&>(*this).has_value() ? __builtin_launder(reinterpret_cast<T const*>(&static_cast<Self const&>(*this).value())) : nullptr;
}
template<typename O = T, typename Fallback = O>
[[nodiscard]] ALWAYS_INLINE constexpr O value_or(Fallback const& fallback) const&
{
if (static_cast<Self const&>(*this).has_value())
return static_cast<Self const&>(*this).value();
return fallback;
}
template<typename O = T, typename Fallback = O>
requires(!IsLvalueReference<O> && !IsRvalueReference<O>)
[[nodiscard]] ALWAYS_INLINE constexpr O value_or(Fallback&& fallback) &&
{
if (static_cast<Self&>(*this).has_value())
return move(static_cast<Self&>(*this).value());
return move(fallback);
}
template<typename Callback, typename O = T>
[[nodiscard]] ALWAYS_INLINE constexpr O value_or_lazy_evaluated(Callback callback) const
{
if (static_cast<Self const&>(*this).has_value())
return static_cast<Self const&>(*this).value();
return callback();
}
template<typename Callback, typename O = T>
[[nodiscard]] ALWAYS_INLINE constexpr Optional<O> value_or_lazy_evaluated_optional(Callback callback) const
{
if (static_cast<Self const&>(*this).has_value())
return static_cast<Self const&>(*this).value();
return callback();
}
template<typename Callback, typename O = T>
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<O> try_value_or_lazy_evaluated(Callback callback) const
{
if (static_cast<Self const&>(*this).has_value())
return static_cast<Self const&>(*this).value();
return TRY(callback());
}
template<typename Callback, typename O = T>
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<Optional<O>> try_value_or_lazy_evaluated_optional(Callback callback) const
{
if (static_cast<Self const&>(*this).has_value())
return static_cast<Self const&>(*this).value();
return TRY(callback());
}
[[nodiscard]] ALWAYS_INLINE constexpr T const& operator*() const { return static_cast<Self const&>(*this).value(); }
[[nodiscard]] ALWAYS_INLINE constexpr T& operator*() { return static_cast<Self&>(*this).value(); }
ALWAYS_INLINE constexpr T const* operator->() const { return &static_cast<Self const&>(*this).value(); }
ALWAYS_INLINE constexpr T* operator->() { return &static_cast<Self&>(*this).value(); }
template<typename F, typename MappedType = decltype(declval<F>()(declval<T&>())), auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>, typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>>
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(F&& mapper)
{
if constexpr (IsErrorOr) {
if (static_cast<Self&>(*this).has_value())
return OptionalType { TRY(mapper(static_cast<Self&>(*this).value())) };
return OptionalType {};
} else {
if (static_cast<Self&>(*this).has_value())
return OptionalType { mapper(static_cast<Self&>(*this).value()) };
return OptionalType {};
}
}
template<typename F, typename MappedType = decltype(declval<F>()(declval<T&>())), auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>, typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>>
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(F&& mapper) const
{
if constexpr (IsErrorOr) {
if (static_cast<Self const&>(*this).has_value())
return OptionalType { TRY(mapper(static_cast<Self const&>(*this).value())) };
return OptionalType {};
} else {
if (static_cast<Self const&>(*this).has_value())
return OptionalType { mapper(static_cast<Self const&>(*this).value()) };
return OptionalType {};
}
}
};
template<typename T>
requires(!IsLvalueReference<T>) class [[nodiscard]] Optional<T> : public OptionalBase<T, Optional<T>> {
template<typename U>
friend class Optional;
static_assert(!IsLvalueReference<T> && !IsRvalueReference<T>);
public:
using ValueType = T;
ALWAYS_INLINE constexpr Optional()
{
construct_null_if_necessary();
}
template<SameAs<OptionalNone> V>
ALWAYS_INLINE constexpr Optional(V)
{
construct_null_if_necessary();
}
template<SameAs<OptionalNone> V>
ALWAYS_INLINE constexpr Optional& operator=(V)
{
clear();
return *this;
}
AK_MAKE_CONDITIONALLY_COPYABLE(Optional, <T>);
AK_MAKE_CONDITIONALLY_MOVABLE(Optional, <T>);
AK_MAKE_CONDITIONALLY_DESTRUCTIBLE(Optional, <T>);
ALWAYS_INLINE constexpr Optional(Optional const& other)
requires(!IsTriviallyCopyConstructible<T>)
: m_has_value(other.m_has_value)
{
if (other.has_value())
construct_at<RemoveConst<T>>(&m_storage, other.value());
else
construct_null_if_necessary();
}
ALWAYS_INLINE constexpr Optional(Optional&& other)
requires(!IsTriviallyMoveConstructible<T>)
: m_has_value(other.m_has_value)
{
if (other.has_value())
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
else
construct_null_if_necessary();
}
template<typename U>
requires(IsConstructible<T, U const&> && !IsSpecializationOf<T, Optional> && !IsSpecializationOf<U, Optional> && (!IsLvalueReference<U> || IsTriviallyCopyConstructible<U>)) ALWAYS_INLINE explicit constexpr Optional(Optional<U> const& other)
: m_has_value(other.has_value())
{
if (other.has_value())
construct_at<RemoveConst<T>>(&m_storage, other.value());
else
construct_null_if_necessary();
}
template<typename U>
requires(IsConstructible<T, U &&> && !IsSpecializationOf<T, Optional> && !IsSpecializationOf<U, Optional> && (!IsLvalueReference<U> || IsTriviallyMoveConstructible<U>)) ALWAYS_INLINE explicit constexpr Optional(Optional<U>&& other)
: m_has_value(other.has_value())
{
if (other.has_value())
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
else
construct_null_if_necessary();
}
template<typename U = T>
requires(!IsSame<OptionalNone, RemoveCVReference<U>>)
ALWAYS_INLINE explicit(!IsConvertible<U&&, T>) constexpr Optional(U&& value)
requires(!IsSame<RemoveCVReference<U>, Optional<T>> && IsConstructible<T, U &&>)
: m_has_value(true)
{
construct_at<RemoveConst<T>>(&m_storage, forward<U>(value));
}
ALWAYS_INLINE constexpr Optional& operator=(Optional const& other)
requires(!IsTriviallyCopyConstructible<T> || !IsTriviallyDestructible<T>)
{
if (this != &other) {
clear();
m_has_value = other.m_has_value;
if (other.has_value())
construct_at<RemoveConst<T>>(&m_storage, other.value());
}
return *this;
}
Optional& operator=(Optional&& other)
requires(!IsMoveConstructible<T> || !IsDestructible<T>)
= delete;
// Note: This overload is optional. It exists purely to match the SerenityOS and `std::optional` behaviour.
// The only (observable) difference between this overload and the next one is that this one calls the move assignment operator when both `this` and `other` have a value.
// The other overload just unconditionally calls the move constructor.
ALWAYS_INLINE constexpr Optional& operator=(Optional&& other)
requires(IsMoveAssignable<T> && IsMoveConstructible<T> && (!IsTriviallyMoveAssignable<T> || !IsTriviallyMoveConstructible<T> || !IsTriviallyDestructible<T>))
{
if (this != &other) {
if (has_value() && other.has_value()) {
value() = other.release_value();
} else if (has_value()) {
value().~T();
m_has_value = false;
} else if (other.has_value()) {
m_has_value = true;
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
}
}
return *this;
}
// Allow for move constructible but non-move assignable types, such as those containing const or reference fields,
// Note: This overload can also handle move assignable types perfectly fine, but the behaviour would be slightly different.
ALWAYS_INLINE constexpr Optional& operator=(Optional&& other)
requires(!IsMoveAssignable<T> && IsMoveConstructible<T> && (!IsTriviallyMoveConstructible<T> || !IsTriviallyDestructible<T>))
{
if (this != &other) {
clear();
m_has_value = other.m_has_value;
if (other.has_value())
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
}
return *this;
}
template<class U = T>
requires(!IsOneOfIgnoringCVReference<U, Optional<T>, OptionalNone> && !(IsSame<U, T> && IsScalar<U>))
// Note: We restrict this to `!IsScalar<U>` to prevent undesired overload resolution for `= {}`.
ALWAYS_INLINE constexpr Optional<T>& operator=(U&& value)
requires(IsConstructible<T, U &&>)
{
if constexpr (IsAssignable<AddLvalueReference<T>, AddRvalueReference<U>>) {
if (m_has_value)
m_storage = forward<U>(value);
else
construct_at<RemoveConst<T>>(&m_storage, forward<U>(value));
m_has_value = true;
} else {
emplace(forward<U>(value));
}
return *this;
}
ALWAYS_INLINE constexpr ~Optional()
requires(!IsTriviallyDestructible<T> && IsDestructible<T>)
{
clear();
}
ALWAYS_INLINE constexpr void clear()
{
if (m_has_value) {
value().~T();
m_has_value = false;
}
}
template<typename... Parameters>
ALWAYS_INLINE constexpr void emplace(Parameters&&... parameters)
{
clear();
m_has_value = true;
construct_at<RemoveConst<T>>(&m_storage, forward<Parameters>(parameters)...);
}
template<typename Callable>
ALWAYS_INLINE constexpr void lazy_emplace(Callable callable)
{
clear();
m_has_value = true;
construct_at<RemoveConst<T>>(&m_storage, callable());
}
[[nodiscard]] ALWAYS_INLINE constexpr bool has_value() const { return m_has_value; }
[[nodiscard]] ALWAYS_INLINE constexpr T& value() &
{
VERIFY(m_has_value);
return m_storage;
}
[[nodiscard]] ALWAYS_INLINE constexpr T const& value() const&
{
VERIFY(m_has_value);
return m_storage;
}
[[nodiscard]] ALWAYS_INLINE constexpr T value() &&
{
return release_value();
}
[[nodiscard]] ALWAYS_INLINE constexpr T release_value()
{
VERIFY(m_has_value);
T released_value = move(value());
value().~T();
m_has_value = false;
return released_value;
}
private:
ALWAYS_INLINE constexpr void construct_null_if_necessary(bool should_construct = is_constant_evaluated())
{
// OPTIMIZATION: Only construct the `m_null` member when we are constant-evaluating.
// Otherwise, this generates an unnecessary zero-fill.
#if defined(AK_COMPILER_GCC)
// NOTE: GCCs -Wuninitialized warning ends up checking this as well.
should_construct = true;
#endif
if (should_construct)
construct_at(&m_null);
}
union {
// FIXME: GCC seems to have an issue with uninitialized unions and non trivial types,
// which forces us to have an equally sized trivial null member in the union
// to pseudo-initialize the union.
struct {
u8 _[sizeof(T)];
} m_null;
RemoveConst<T> m_storage;
};
bool m_has_value { false };
};
template<typename T>
requires(IsLvalueReference<T>) class [[nodiscard]] Optional<T> {
AK_MAKE_DEFAULT_COPYABLE(Optional);
AK_MAKE_DEFAULT_MOVABLE(Optional);
template<typename>
friend class Optional;
template<typename U>
constexpr static bool CanBePlacedInOptional = IsSame<RemoveReference<T>, RemoveReference<AddConstToReferencedType<U>>> && (IsBaseOf<RemoveCVReference<T>, RemoveCVReference<U>> || IsSame<RemoveCVReference<T>, RemoveCVReference<U>>);
public:
using ValueType = T;
ALWAYS_INLINE constexpr Optional() = default;
template<SameAs<OptionalNone> V>
ALWAYS_INLINE constexpr Optional(V) { }
template<SameAs<OptionalNone> V>
ALWAYS_INLINE constexpr Optional& operator=(V)
{
clear();
return *this;
}
template<typename U = T>
ALWAYS_INLINE constexpr Optional(U& value)
requires(CanBePlacedInOptional<U&>)
: m_pointer(&value)
{
}
ALWAYS_INLINE constexpr Optional(RemoveReference<T>& value)
: m_pointer(&value)
{
}
template<typename U>
ALWAYS_INLINE constexpr Optional(Optional<U>& other)
requires(CanBePlacedInOptional<U>)
: m_pointer(other.ptr())
{
}
template<typename U>
ALWAYS_INLINE constexpr Optional(Optional<U> const& other)
requires(CanBePlacedInOptional<U const>)
: m_pointer(other.ptr())
{
}
template<typename U>
ALWAYS_INLINE constexpr Optional(Optional<U>&& other)
requires(CanBePlacedInOptional<U>)
: m_pointer(other.ptr())
{
other.m_pointer = nullptr;
}
template<typename U>
ALWAYS_INLINE constexpr Optional& operator=(Optional<U>& other)
requires(CanBePlacedInOptional<U>)
{
m_pointer = other.ptr();
return *this;
}
template<typename U>
ALWAYS_INLINE constexpr Optional& operator=(Optional<U> const& other)
requires(CanBePlacedInOptional<U const>)
{
m_pointer = other.ptr();
return *this;
}
template<typename U>
ALWAYS_INLINE constexpr Optional& operator=(Optional<U>&& other)
requires(CanBePlacedInOptional<U> && IsLvalueReference<U>)
{
m_pointer = other.m_pointer;
other.m_pointer = nullptr;
return *this;
}
template<typename U>
requires(!IsSame<OptionalNone, RemoveCVReference<U>>)
ALWAYS_INLINE constexpr Optional& operator=(U& value)
requires(CanBePlacedInOptional<U>)
{
m_pointer = &value;
return *this;
}
// Note: Disallows assignment from a temporary as this does not do any lifetime extension.
template<typename U>
requires(!IsSame<OptionalNone, RemoveCVReference<U>>)
ALWAYS_INLINE consteval Optional& operator=(RemoveReference<U> const&& value)
requires(CanBePlacedInOptional<U>)
= delete;
ALWAYS_INLINE constexpr void clear()
{
m_pointer = nullptr;
}
[[nodiscard]] ALWAYS_INLINE constexpr bool has_value() const { return m_pointer != nullptr; }
[[nodiscard]] ALWAYS_INLINE RemoveReference<T>* ptr()
{
return m_pointer;
}
[[nodiscard]] ALWAYS_INLINE RemoveReference<T> const* ptr() const
{
return m_pointer;
}
[[nodiscard]] ALWAYS_INLINE constexpr T value()
{
VERIFY(m_pointer);
return *m_pointer;
}
[[nodiscard]] ALWAYS_INLINE constexpr AddConstToReferencedType<T> value() const
{
VERIFY(m_pointer);
return *m_pointer;
}
template<typename U>
requires(IsBaseOf<RemoveCVReference<T>, U>) [[nodiscard]] ALWAYS_INLINE constexpr AddConstToReferencedType<T> value_or(U& fallback) const
{
if (m_pointer)
return value();
return fallback;
}
// Note that this ends up copying the value.
[[nodiscard]] ALWAYS_INLINE constexpr RemoveCVReference<T> value_or(RemoveCVReference<T> fallback) const
{
if (m_pointer)
return value();
return fallback;
}
[[nodiscard]] ALWAYS_INLINE constexpr T release_value()
{
return *exchange(m_pointer, nullptr);
}
ALWAYS_INLINE constexpr AddConstToReferencedType<T> operator*() const { return value(); }
ALWAYS_INLINE constexpr T operator*() { return value(); }
ALWAYS_INLINE RawPtr<AddConst<RemoveReference<T>>> operator->() const { return &value(); }
ALWAYS_INLINE RawPtr<RemoveReference<T>> operator->() { return &value(); }
// Conversion operators from Optional<T&> -> Optional<T>, implicit when T is trivially copyable.
ALWAYS_INLINE constexpr operator Optional<RemoveCVReference<T>>() const
requires(IsTriviallyCopyable<RemoveCVReference<T>>)
{
if (has_value())
return Optional<RemoveCVReference<T>>(value());
return {};
}
// Conversion operators from Optional<T&> -> Optional<T>, explicit when T is not trivially copyable, since this is usually a mistake.
ALWAYS_INLINE explicit constexpr operator Optional<RemoveCVReference<T>>() const
requires(!IsTriviallyCopyable<RemoveCVReference<T>>)
{
if (has_value())
return Optional<RemoveCVReference<T>>(value());
return {};
}
ALWAYS_INLINE constexpr Optional<RemoveCVReference<T>> copy() const
{
return static_cast<Optional<RemoveCVReference<T>>>(*this);
}
template<typename Callback>
[[nodiscard]] ALWAYS_INLINE constexpr T value_or_lazy_evaluated(Callback callback) const
{
if (m_pointer != nullptr)
return value();
return callback();
}
template<typename Callback>
[[nodiscard]] ALWAYS_INLINE constexpr Optional<T> value_or_lazy_evaluated_optional(Callback callback) const
{
if (m_pointer != nullptr)
return value();
return callback();
}
template<typename Callback>
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<T> try_value_or_lazy_evaluated(Callback callback) const
{
if (m_pointer != nullptr)
return value();
return TRY(callback());
}
template<typename Callback>
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<Optional<T>> try_value_or_lazy_evaluated_optional(Callback callback) const
{
if (m_pointer != nullptr)
return value();
return TRY(callback());
}
template<typename F, typename MappedType = decltype(declval<F>()(declval<T&>())), auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>, typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>>
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(F&& mapper)
{
if constexpr (IsErrorOr) {
if (m_pointer != nullptr)
return OptionalType { TRY(mapper(value())) };
return OptionalType {};
} else {
if (m_pointer != nullptr)
return OptionalType { mapper(value()) };
return OptionalType {};
}
}
template<typename F, typename MappedType = decltype(declval<F>()(declval<T&>())), auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>, typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>>
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(F&& mapper) const
{
if constexpr (IsErrorOr) {
if (m_pointer != nullptr)
return OptionalType { TRY(mapper(value())) };
return OptionalType {};
} else {
if (m_pointer != nullptr)
return OptionalType { mapper(value()) };
return OptionalType {};
}
}
private:
RemoveReference<T>* m_pointer { nullptr };
};
template<typename T1, typename T2>
ALWAYS_INLINE constexpr bool operator==(Optional<T1> const& first, Optional<T2> const& second)
{
return first.has_value() == second.has_value()
&& (!first.has_value() || first.value() == second.value());
}
template<typename T1, typename T2>
ALWAYS_INLINE constexpr bool operator==(Optional<T1> const& first, T2 const& second)
{
return first.has_value() && first.value() == second;
}
template<typename T>
ALWAYS_INLINE constexpr bool operator==(Optional<T> const& first, OptionalNone)
{
return !first.has_value();
}
}
#if USING_AK_GLOBALLY
using AK::Optional;
using AK::OptionalNone;
#endif