Memory stream is a more suitable container for the socket send queue,
as using it results in fewer allocations than trying to emulate a stream
using a Vector.
Bring back d6080d1fdc with a missing check
whether underlying socket is closed, before accessing `fd()` that is
optional and empty in case of closed socket.
With this change TransportSocket becomes capable of sending large
messages without relying on workarounds, such as sending the message as
a shared memory file descriptor when it can't fully fit into the socket
buffer.
It's implemented by combining all enqueued messages into two buffers:
one for bytes and another for fds, and repeatedly attempts to write them
in smaller chunks, waiting for the socket to become writable again if
the receiver needs time to consume the data.
Another significant improvement brought by this change is that we no
longer drop messages queued for sending if the socket doesn't become
writable after a 100ms timeout. Instead, we return the message to the
send buffer and continue waiting for the socket to become writable.
Instead of wrapping all non-movable members of TransportSocket in OwnPtr
to keep it movable, make TransportSocket itself non-movable and wrap it
in OwnPtr.
By doing this we also make MessagePort, that relies on IPC transport,
to send messages from separate thread, which solves the problem when
WebWorker and WebContent could deadlock if both were trying to post
messages at the same time.
Fixes https://github.com/LadybirdBrowser/ladybird/issues/4254
Reimplements c3121c9d at the transport layer, allowing us to solve the
same problem once, in a single place, for both the LibIPC connection and
MessagePort. This avoids exposing a workaround for a macOS specific Unix
domain socket issue to higher abstraction layers.
With this change, the responsibility for prepending messages with their
size and ensuring the entire message is received before returning it to
the caller is moved to TransportSocket. This removes the need to
duplicate this logic in both LibIPC and MessagePort.
Another advantage of reducing message granularity at IPC::Transport
layer is that it will make it easier to support alternative transport
implementations (like Mach ports, which unlike Unix domain sockets are
not stream oriented).
It turned out that some web applications want to send fairly large
messages to WebWorker through IPC (for example, MapLibre GL sends
~1200KiB), which led to failures (at least on macOS) because buffer size
of TransportSocket is limited to 128KiB. This change solves the problem
by wrapping messages that exceed socket buffer size into another message
that holds wrapped message content in shared memory.
Co-Authored-By: Luke Wilde <luke@ladybird.org>