We now parse `<counter-name>` values as a `<custom-ident>`. This
disallows `default` and CSS-wide keywords as counter names. The
specification additionally disallows `none` as a counter name.
Before this change, an element masked with 'mask-image: url(...)' would
show the mask, but 'mask: url(...)' would not. On e.g. dialogic.nl it
would show white boxes instead of the actual images in the top
navigation bar. We still do not support many of the other mask
properties, but with this change at least the masks show up in both
cases.
The `cursor` property accepts a list of possible cursors, which behave
as a fallback: We use whichever cursor is the first available one. This
is a little complicated because initially, any remote images have not
loaded, so we need to use the fallback standard cursor, and then switch
to another when it loads.
So, ComputedValues stores a Vector of cursors, and then in EventHandler
we scan down that list until we find a cursor that's ready for use.
The spec defines cursors as being `<url>`, but allows for `<image>`
instead. That includes functions like `linear-gradient()`.
This commit implements image cursors in the Qt UI, but not AppKit.
Having multiple kinds of node that hold numeric values made things more
complicated than they needed to be, and we were already converting
ConstantCalculationNodes to NumericCalculationNodes in the first
simplification pass that happens at parse-time, so they didn't exist
after that.
As noted, the spec allows for other contexts to introduce their own
numeric keywords, which might be resolved later than parse-time. We'll
need a different mechanism to support those, but
ConstantCalculationNode could not have done so anyway.
Before this change, we only parsed fit-content as a standalone keyword,
but CSS-SIZING-3 added it as a function as well. I don't know of
anything else in CSS that is overloaded like this, so it ends up looking
a little awkward in the implementation.
Note that a lot of code had already been prepped for fit-content values
to have an argument, we just weren't parsing it.
If the expansion of a custom property in variable expansion returns
tokens, then the custom property is not the initial guaranteed-invalid
value.
If it didn't return any tokens, then it is the initial
guaranteed-invalid value, and thus we should move on to the fallback
value.
Makes Shopify checkout show the background colours, borders, skeletons,
etc.
The spec wants these keywords to appear in a particular order when
serialized, so let's just put them in that order during parsing.
This also fixes a bug where we didn't reject `font-variant-east-asian`
that contains `normal` alongside another value.
Also, rather than always parsing them as a StyleValueList, parse single
values on their own, and then support that in the to_font_variant_foo()
methods.
Without this, we'd happily parse `font-variant-caps: small-caps potato`
as just `small-caps` and ignore the fact that unused tokens were left
over.
This fix gets us some WPT subtest passes, and removes the need for a
bespoke parsing function for font-variant-caps.
This is a weird behaviour specific to `font` - it can reset some
properties that it never actually sets. As such, it didn't seem worth
adding this concept to the code generator, but just manually stuffing
the ShorthandStyleValue with them during parsing.
This is not really a context, but more of a set of parameters for
creating a Parser. So, treat it as such: Rename it to ParsingParams,
and store its values and methods directly in the Parser instead of
keeping the ParsingContext around.
This has a nice side-effect of not including DOM/Document.h everywhere
that needs a Parser.
A few of these are only ever called with T=Token, so let's simplify them
a bit.
As a drive-by change: Also correct the "unnecessairy" typos and use
discard_a_token().
This file has been a pain to edit for a while, even with the previous
splits. So, I've divided it up into 3 parts:
- Parser.cpp has the "base" code. It's the algorithms and entry-points
defined in the Syntax spec.
- ValueParsing.cpp contains code for parsing single values, such as a
length, or a color, or a calculation.
- PropertyParsing.cpp contains code for parsing an entire property's
value. A few of these sit in a grey area between being a property's
value and a value in their own right, but the rule I've used is "is
this useful outside of a single property and its shorthands?"
This only moves code, with as few modifications as possible to make that
work. I did add explicit instantiations for the template implementations
as part of this, which revealed a few that are actually only compatible
with a single type, so I'll clear those up in a subsequent commit.
Used by chess.com, where it stores URLs to assets in CSS URL variables.
It then receives the value of them with getComputedStyle() and then
getPropertyValue(). With this, it trims off the url('') wrapper with a
simple slice(5, -2). Since we didn't preserve the opening quotation, it
would slice off the `h` in `https` instead of the quotation.
The Web::CSS::Parser's GradientParsing ignores color-stops if
it is only a single one. This change allows to have color-stops
with double positions against a single color.
Further, also allows for `linear-gradient(black)` and similar
other gradient functions
If a calculation was simplified down to a single numeric node, then most
of the time we can instead return a regular StyleValue, for example
`calc(2px + 3px)` would be simplified down to a `5px` LengthStyleValue.
This means that parse_calculated_value() can't return a
CalculatedStyleValue directly, and its callers all have to handle
non-calculated values as well as calculated ones.
This simplification is reflected in the new test results. Serialization
is not yet correct in all cases but we're closer than we were. :^)
Calc simplification eventually produces a single style-value as its
output. This extra context data will let us know whether a calculated
number should be treated as a `<number>` or an `<integer>`, so that for
example, `z-index: 12` and `z-index: calc(12)` both produce an
`IntegerStyleValue` containing 12.
Calc simplification (which I'm working towards) involves repeatedly
deriving a new calculation tree from an existing one, and in many
cases, either the whole result or a portion of it will be identical to
that of the original. Using RefPtr lets us avoid making unnecessary
copies. As a bonus it will also make it easier to return either `this`
or a new node.
In future we could also cache commonly-used nodes, similar to how we do
so for 1px and 0px LengthStyleValues and various keywords.
Initially I added this to the existing CalculationContext, but in
reality, we have some data at parse-time and different data at
resolve-time, so it made more sense to keep those separate.
Instead of needing a variety of methods for resolving a Foo, depending
on whether we have a Layout::Node available, or a percentage basis, or
a length resolution context... put those in a
CalculationResolutionContext, and just pass that one thing to these
methods. This also removes the need for separate resolve_*_percentage()
methods, because we can just pass the percentage basis in to the regular
resolve_foo() method.
This also corrects the issue that *any* calculation may need to resolve
lengths, but we previously only passed a length resolution context to
specific types in some situations. Now, they can all have one available,
though it's up to the caller to provide it.
We have an optimization that allows us to invalidate only the style of
the element itself and mark descendants for inherited properties update
when the "style" attribute changes (unless there are any CSS rules that
use the "style" attribute, then we also invalidate all descendants that
might be affected by those rules). This optimization was not taking into
account that when the inline style has custom properties, we also need
to invalidate all descendants whose style might be affected by them.
This change fixes this bug by saving a flag in Element that indicates
whether its style depends on any custom properties and then invalidating
all descendants with this flag set when the "style" attribute changes.
Unlike font relative lengths invalidation, for elements that depend on
custom properties, we need to actually recompute the style, instead of
individual properties, because values without expanded custom properties
are gone after cascading, and it has to be done again.
The test added for this change is a version of an existing test we had
restructured such that it doesn't trigger aggressive style invalidation
caused by DOM structured changes until the last moment when test results
are printed.
Same again, although rotation is more complicated: `rotate`
is "equivalent to" multiple different transform function depending on
its arguments. So we can parse as one of those instead of the full
`rotate3d()`, but then need to handle this when serializing.
The only ways this varies from the `scale()` function is with parsing
and serialization. Parsing stays separate, and serialization is done by
telling `TransformationStyleValue` which property it is, and overriding
its normal `to_string()` code for properties other than `transform`.