1
0
Fork 0
mirror of https://github.com/LadybirdBrowser/ladybird.git synced 2025-06-09 09:34:57 +09:00

AK: Move memory streams into their own header.

This commit is contained in:
asynts 2020-09-01 11:43:32 +02:00 committed by Andreas Kling
parent f9516a99bf
commit b68a873067
Notes: sideshowbarker 2024-07-19 02:56:42 +09:00
12 changed files with 314 additions and 298 deletions

View file

@ -26,15 +26,12 @@
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/Concepts.h>
#include <AK/Endian.h>
#include <AK/Forward.h>
#include <AK/MemMem.h>
#include <AK/Optional.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/Vector.h>
namespace AK::Detail {
@ -116,6 +113,7 @@ OutputStream& operator<<(OutputStream& stream, LittleEndian<T> value)
{
return stream << ReadonlyBytes { &value.m_value, sizeof(value.m_value) };
}
template<typename T>
InputStream& operator>>(InputStream& stream, BigEndian<T>& value)
{
@ -136,22 +134,13 @@ InputStream& operator>>(InputStream& stream, Optional<T>& value)
return stream;
}
#if defined(__cpp_concepts) && !defined(__COVERITY__)
template<Concepts::Integral Integral>
#else
template<typename Integral, typename EnableIf<IsIntegral<Integral>::value, int>::Type = 0>
#endif
InputStream& operator>>(InputStream& stream, Integral& value)
{
stream.read_or_error({ &value, sizeof(value) });
return stream;
}
#if defined(__cpp_concepts) && !defined(__COVERITY__)
template<Concepts::Integral Integral>
#else
template<typename Integral, typename EnableIf<IsIntegral<Integral>::value, int>::Type = 0>
#endif
OutputStream& operator<<(OutputStream& stream, Integral value)
{
stream.write_or_error({ &value, sizeof(value) });
@ -160,24 +149,13 @@ OutputStream& operator<<(OutputStream& stream, Integral value)
#ifndef KERNEL
// FIXME: clang-format adds spaces before the #if for some reason.
// clang-format off
#if defined(__cpp_concepts) && !defined(__COVERITY__)
template<Concepts::FloatingPoint FloatingPoint>
#else
template<typename FloatingPoint, typename EnableIf<IsFloatingPoint<FloatingPoint>::value, int>::Type = 0>
#endif
InputStream& operator>>(InputStream& stream, FloatingPoint& value)
{
stream.read_or_error({ &value, sizeof(value) });
return stream;
}
#if defined(__cpp_concepts) && !defined(__COVERITY__)
template<Concepts::FloatingPoint FloatingPoint>
#else
template<typename FloatingPoint, typename EnableIf<IsFloatingPoint<FloatingPoint>::value, int>::Type = 0>
#endif
OutputStream& operator<<(OutputStream& stream, FloatingPoint value)
{
stream.write_or_error({ &value, sizeof(value) });
@ -185,281 +163,16 @@ OutputStream& operator<<(OutputStream& stream, FloatingPoint value)
}
#endif
// clang-format on
inline InputStream& operator>>(InputStream& stream, bool& value)
{
stream.read_or_error({ &value, sizeof(value) });
return stream;
}
inline OutputStream& operator<<(OutputStream& stream, bool value)
{
stream.write_or_error({ &value, sizeof(value) });
return stream;
}
class InputMemoryStream final : public InputStream {
public:
InputMemoryStream(ReadonlyBytes bytes)
: m_bytes(bytes)
{
}
bool eof() const override { return m_offset >= m_bytes.size(); }
size_t read(Bytes bytes) override
{
const auto count = min(bytes.size(), remaining());
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
m_offset += count;
return count;
}
bool read_or_error(Bytes bytes) override
{
if (remaining() < bytes.size()) {
set_recoverable_error();
return false;
}
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
m_offset += bytes.size();
return true;
}
bool discard_or_error(size_t count) override
{
if (remaining() < count) {
set_recoverable_error();
return false;
}
m_offset += count;
return true;
}
void seek(size_t offset)
{
ASSERT(offset < m_bytes.size());
m_offset = offset;
}
u8 peek_or_error() const
{
if (remaining() == 0) {
set_recoverable_error();
return 0;
}
return m_bytes[m_offset];
}
// LEB128 is a variable-length encoding for integers
bool read_LEB128_unsigned(size_t& result)
{
const auto backup = m_offset;
result = 0;
size_t num_bytes = 0;
while (true) {
// Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
// past the end, this is fixed here.
if (eof()) {
m_offset = backup;
set_recoverable_error();
return false;
}
const u8 byte = m_bytes[m_offset];
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
++m_offset;
if (!(byte & (1 << 7)))
break;
++num_bytes;
}
return true;
}
// LEB128 is a variable-length encoding for integers
bool read_LEB128_signed(ssize_t& result)
{
const auto backup = m_offset;
result = 0;
size_t num_bytes = 0;
u8 byte = 0;
do {
// Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
// past the end, this is fixed here.
if (eof()) {
m_offset = backup;
set_recoverable_error();
return false;
}
byte = m_bytes[m_offset];
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
++m_offset;
++num_bytes;
} while (byte & (1 << 7));
if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) {
// sign extend
result |= ((size_t)(-1) << (num_bytes * 7));
}
return true;
}
ReadonlyBytes bytes() const { return m_bytes; }
size_t offset() const { return m_offset; }
size_t remaining() const { return m_bytes.size() - m_offset; }
private:
ReadonlyBytes m_bytes;
size_t m_offset { 0 };
};
// All data written to this stream can be read from it. Reading and writing is done
// using different offsets, meaning that it is not necessary to seek to the start
// before reading; this behaviour differs from BufferStream.
class DuplexMemoryStream final : public DuplexStream {
public:
static constexpr size_t chunk_size = 4 * 1024;
bool eof() const override { return m_write_offset == m_read_offset; }
bool discard_or_error(size_t count) override
{
if (m_write_offset - m_read_offset < count) {
set_recoverable_error();
return false;
}
m_read_offset += count;
try_discard_chunks();
return true;
}
Optional<size_t> offset_of(ReadonlyBytes value) const
{
if (value.size() > remaining())
return {};
// First, find which chunk we're in.
auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size;
auto first_chunk_index = chunk_index;
auto last_written_chunk_offset = m_write_offset % chunk_size;
auto first_chunk_offset = m_read_offset % chunk_size;
size_t last_chunk_offset = 0;
auto found_value = false;
for (; chunk_index <= last_written_chunk_index; ++chunk_index) {
auto chunk_bytes = m_chunks[chunk_index].bytes();
size_t chunk_offset = 0;
if (chunk_index == last_written_chunk_index) {
chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset);
}
if (chunk_index == first_chunk_index) {
chunk_bytes = chunk_bytes.slice(first_chunk_offset);
chunk_offset = first_chunk_offset;
}
// See if 'value' is in this chunk,
auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size());
if (!position)
continue; // Not in this chunk either :(
// We found it!
found_value = true;
last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset;
break;
}
if (found_value) {
if (first_chunk_index == chunk_index)
return last_chunk_offset - first_chunk_offset;
return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset;
}
// No dice.
return {};
}
size_t read(Bytes bytes) override
{
size_t nread = 0;
while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
const auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread);
nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
}
m_read_offset += nread;
try_discard_chunks();
return nread;
}
bool read_or_error(Bytes bytes) override
{
if (m_write_offset - m_read_offset < bytes.size()) {
set_recoverable_error();
return false;
}
read(bytes);
return true;
}
size_t write(ReadonlyBytes bytes) override
{
size_t nwritten = 0;
while (bytes.size() - nwritten > 0) {
if ((m_write_offset + nwritten) % chunk_size == 0)
m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));
nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size));
}
m_write_offset += nwritten;
return nwritten;
}
bool write_or_error(ReadonlyBytes bytes) override
{
write(bytes);
return true;
}
size_t roffset() const { return m_read_offset; }
size_t woffset() const { return m_write_offset; }
size_t remaining() const { return m_write_offset - m_read_offset; }
private:
void try_discard_chunks()
{
while (m_read_offset - m_base_offset >= chunk_size) {
m_chunks.take_first();
m_base_offset += chunk_size;
}
}
Vector<ByteBuffer> m_chunks;
size_t m_write_offset { 0 };
size_t m_read_offset { 0 };
size_t m_base_offset { 0 };
};
}
using AK::DuplexMemoryStream;
using AK::InputMemoryStream;
using AK::InputStream;